]>
2019
12
6
ISSN 2008-1898
66
A note on the topological transversality theorem for the admissible maps of Gorniewicz
A note on the topological transversality theorem for the admissible maps of Gorniewicz
en
en
In this paper we discuss
essential maps and the topological transversality theorem for maps
admissible with respect to Gorniewicz.
345
348
Donal
O'Regan
School of Mathematics, Statistics and Applied Mathematics
National University of Ireland
Ireland
donal.oregan@nuigalway.ie
Essential maps
homotopy
Article.1.pdf
[
[1]
R. P. Agarwal, D. O’Regan, Continuation theorems for countably condensing maps, Nonlinear Funct. Anal. Appl., 6 (2001), 1-18
##[2]
R. P. Agarwal, D. O’Regan, A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett., 18 (2005), 17-22
##[3]
G. Gabor, L. Górniewicz, M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Var. Anal., 17 (2009), 1-19
##[4]
L. Górniewicz, Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht (1999)
##[5]
L. Górniewicz, M. Slosarski , Topological essentiality and differential inclusions, Bull. Austral. Math. Soc., 45 (1992), 177-193
##[6]
A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris, 282 (1976), 983-985
##[7]
W. Kryszewski, Topological and approximation methods of degree theory of set–valued maps, Dissertationes Math (Rozprawy Mat.), 336 (1994), 1-101
##[8]
W. Kryszewski, Homotopy properties of set–valued mappings, Uniwersytet Mikoaja Kopernika, Torun (1997)
##[9]
D. O’Regan, Continuation methods based on essential and 0–epi maps, Acta Appl. Math., 54 (1998), 319-330
##[10]
D. O’Regan, Generalized coincidence theory for set–valued maps, J. Nonlinear Sci. Appl., 10 (2017), 855-864
##[11]
D. O’Regan, Topological transversality principles and general coincidence theory, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat., 25 (2017), 159-170
##[12]
R. Precup, On the topological transversality principle, Nonlinear Anal., 20 (1993), 1-9
]
Strong convergence theorems for mixed equilibrium problems and uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces
Strong convergence theorems for mixed equilibrium problems and uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces
en
en
The purpose of this paper is to suggest a new algorithm for finding a common solution of a mixed equilibrium problem and a common fixed point of uniformly Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces. The strong convergence theorems under suitable control conditions are proven.
349
362
Kittisak
Jantakarn
Department of Mathematics, Faculty of Science
Naresuan University
Thailand
kittisak93@hotmai.com
Anchalee
Kaewcharoen
Department of Mathematics, Faculty of Science
Naresuan University
Thailand
anchaleeka@nu.ac.th
Mixed equilibrium problems
Bregman totally quasi-asymptotically nonexpansive mappings
reflexive Banach spaces
Article.2.pdf
[
[1]
E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145
##[2]
L. M. Brégman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR. Comput. Math. Math. Phys., 7 (1967), 200-217
##[3]
D. Butnariu, A. N. Iusem, Totally convex functions for fixed points computation and infinite dimensional optimization, Academic press, Dordrecht (2012)
##[4]
D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 1-39
##[5]
L.-C. Ceng, J.-C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214 (2008), 186-201
##[6]
Y. Censor, A. Lent , An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34 (1981), 321-353
##[7]
S. S. Chang, L. Wang, X. R. Wang, C. K. Chan , Strong convergence theorems for Bregman totally quasi-asymptotically nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., 228 (2014), 38-48
##[8]
V. Darvish, A new algorithm for mixed equilibrium problem and Bregman strongly nonexpansive mapping in Banach spaces, arXiv, 2015 (2015), 1-20
##[9]
Y. Y. Huang, J. C. Jeng, T. C. Kuo, C. C. Hong, Fixed point and weak convergence theorems for point-dependent \(\lambda\)-hybrid mappings in Banac spaces, Fixed Point Theory Appl., 2011 (2011), 1-15
##[10]
G. Kassay, S. Reich, S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM. J. Optim., 21 (2011), 1319-1344
##[11]
W. Nilsrakoo, S. Saejung, Strong convergence theorems by Halpern-Mann iterations for relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput., 217 (2011), 6577-6586
##[12]
S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73 (2010), 122-135
##[13]
S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 22-44
##[14]
S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-Point Algorithms for Inverse Problemsin Science and Engineering, Academic Press, 2011 (2011), 301-316
##[15]
S. Suantai, Y. J. Cho, P. Cholamjiak, Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput. Math. Appl., 64 (2012), 489-499
##[16]
S. H. Wang, S. M. Kang, Strong convergence iterative algorithms for equilibrium problems and fixed point problems in Banach spaces, Abstr. Appl. Anal., 2013 (2013), 1-9
##[17]
S. Zhu, J. H. Huang, Strong convergence theorems for equilibrium problem and Bregman totally quasi-asymptotically nonexpansive mapping in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 1433-1444
]
Dissipativity and stability of a class of nonlinear multiple time delay integro-differential equations
Dissipativity and stability of a class of nonlinear multiple time delay integro-differential equations
en
en
This paper is concerned with the dissipativity and stability of the theoretical
solutions of a class of nonlinear multiple time
delay integro-differential equations. At the first, we give a generalized Halanay inequality which plays an important role
in the study of dissipativity and stability of integro-differential equations. Then, we apply the
generalized Halanay inequality to the dissipativity and the
stability the theoretical solution of delay integro-differential equations
(or by small \(\epsilon\) perturbed) and some interesting results are obtained. Our results generalize a few previous known results.
Finally, two examples are provided to demonstrated the effectiveness and advantage of the theoretical results.
363
375
Chaolong
Zhang
College of Computational Science
Zhongkai University of Agriculture and Engineering
P. R. China
handsomezcl@126.com
Feiqi
Deng
Systems Engineering Institute
South China University of Technology
P. R. China
aufqdeng@scut.edu.cn
Haoyi
Mo
School of Applied Mathematics
Guangdong University of Technology
P. R. China
mhy04@163.com
Hongwei
Ren
School of computer and electronic information
Guangdong University of Petrochemical Technology
P. R. China
rhw-6621@163.com
Delay integro-differential equations
dynamical systems
Halanay inequality
dissipativity
stability
Article.3.pdf
[
[1]
S. Arik, On the global dissipativity of dynamical neural networks with time delays, Phys. Lett. A, 326 (2004), 126-132
##[2]
C. T. H. Baker, Development and application of Halanay-type theory: Evolutionary differential and difference equations with time lag, J. Comput. Appl. Math., 234 (2010), 2663-2682
##[3]
C. T. H. Baker, A. Tang, Generalized Halanay inequalities for Volterra functional differential equations and discreted versions, in: Volterra Centennial Meeting, 2000 (2000), 39-55
##[4]
Z. W. Cai, L. H. Huang, Functional differential inclusions and dynamic behaviors for memristor-based BAM neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1279-1300
##[5]
M. El-Gebeily, D. O’Regan, Existence and boundary behavior for singular nonlinear differential equations with arbitrary boundary conditions, J. Math. Anal. Appl., 334 (2007), 140-156
##[6]
A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, Academic Press, New York-London (1966)
##[7]
D. W. C. Ho, J. L. Liang, J. Lam, Global exponential stability of impulsive high-order BAM neural networks with timevarying delay, Neural Networks, 19 (2006), 1581-1590
##[8]
C. X. Huang, Y. G. He, H. Wang, Mean square exponential stability of stochastic recurrent neural networks with timevarying delays, Comput. Math. Appl., 56 (2008), 1773-1778
##[9]
X. D. Li, Existence and global exponential stability of periodic solution for impulsive CohenCGrossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292-307
##[10]
X. D. Li, M. Bohner, Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback, Math. Comput. Modelling, 52 (2010), 643-653
##[11]
X. D. Li, M. Bohner, An impulsive delay differential inequality and applications, Comput. Math. Appl., 64 (2012), 1875-1881
##[12]
B. Li, D. Xu, Mean square asymptotic behavior of stochastic neural networks with infinitely distributed delays, Neurocomputing, 72 (2009), 3311-3317
##[13]
X. Liao, J. Wang, Global dissipativity of continuous-time recurrent neural networks with time delay, Phys. Rev. E, 68 (2003), 1-7
##[14]
X. Y. Liu, T. P. Chen, J. D. Cao, W. L. Lu, Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches, Neural Networks, 24 (2011), 1013-1021
##[15]
B. Liu, W. L. Lu, T. P. Chen, Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays, IEEE Trans. Neural Networks, 22 (2011), 1508-1513
##[16]
X. Z. Liu, K. L. Teo, B. G. Xu, Exponential stability of impulsive high-order Hopfield-type neural networks with timevarying delay, IEEE Trans. Neural Networks, 16 (2005), 1329-1339
##[17]
Y. Liu, Z. Wang, X. Liu, Global asymptotic stability of generalized bi-directional as sociative memory networks with discrete and distributed delays, Chaos Solitons Fractals, 28 (2006), 793-803
##[18]
K. Y. Liu, H. Q. Zhang, An improved global exponential stability criterion for delayed neural networks, Nonlinear Anal. Real World Appl., 10 (2009), 2613-2619
##[19]
X. Y. Lou, B. T. Cui , Global robust dissipativity for integro-differential systems modeling neural networks with delays, Chaos Solitons Fractals, 36 (2008), 469-478
##[20]
S. Mohamad, K. Gopalsamy, Continuous and discrete Halanay-type inequalities, Bull. Austral. Math. Soc., 61 (2000), 371-385
##[21]
S. Mohamad, K. Gopalsamy, H. Akca, Exponential stability of artificial neural networks with distributed delays and large impulses, Nonlinear Anal. Real World Appl., 9 (2008), 872-888
##[22]
D. O’Regan, M. El-Gebeily, Existence, upper and lower solutions and quasilinearization for singular differential equations, IMA J. Appl. Math., 73 (2008), 323-344
##[23]
J.-L. Shao, T.-Z. Huang, X.-P. Wang , Further analysis on global robust exponential stability of neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1117-1124
##[24]
J.-L. Shao, T.-Z. Huang, S. Zhou, Some improved criteria for global robust exponential stability of neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3782-3794
##[25]
H. J. Tian, The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag, J. Math. Anal. Appl., 270 (2002), 143-149
##[26]
Z. W. Tu, J. G. Jian, K. Wang, Global exponential stability in Lagrange sense for recurrent neural networks with both time-varying delays and general activation functions via LMI approach, Nonlinear Anal. Real World Appl., 12 (2011), 2174-2182
##[27]
Z. W. Tu, L. W. Wang, Z. W. Zha, J. Jian, Global dissipativity of a class of BAM neural networks with time-varying and unbound delays, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2562-2570
##[28]
L. S. Wang, D. Xu, Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466-474
##[29]
L. S. Wang, L. Zhang, X. H. Ding, Global dissipativity of a class of BAM neural networks with both time-varying and continuously distributed delays, Neurocomputing, 152 (2015), 250-260
##[30]
L. P. Wen, W. S. Wang, Y. X. Yu, Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Anal., 72 (2010), 1746-1754
##[31]
L. P. Wen, Y. X. Yu, W. S. Wang, Genernalized Halanay inequalities for disspativity of Volterra functional differential equations, J. Math. Anal. Appl., 347 (2008), 169-178
##[32]
D. Xu, Z. C. yang , Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120
##[33]
X. S. Yang, Z. C. Yang, Synchronization of TS fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects, Fuzzy Sets and Systems, 235 (2014), 25-43
##[34]
D. Yue, S. F. Xu, Y. Q. Liu, A differential inequality with delay and impulse and its applications to the design of robust controllers, Control Theory Appl., 16 (1999), 519-524
##[35]
Y. Zhang, J. T. Sun , Stability of impulsive functional differential equations, Nonlinear Anal., 68 (2008), 3665-3678
##[36]
Y. Zhang, J. T. Sun, Stability of impulsive linear hybrid systems with time delay, J. Syst. Sci. Complex., 23 (2010), 738-747
##[37]
X. Y. Zhao, F. Q. Deng, Moment stability of nonlinear discrete stochastic systems with time-delays based on Hrepresentation technique, Automatica J. IFAC, 50 (2014), 530-536
##[38]
C. Zheng, N. L. JindeCao, Matrix measure based stability criteria for high-order neural networks with proportional delay, Neurocomputing, 149 (2015), 1149-1154
]
Stable monotone iterative solutions to a class of boundary value problems of nonlinear fractional order differential equations
Stable monotone iterative solutions to a class of boundary value problems of nonlinear fractional order differential equations
en
en
We construct sufficient conditions for existence of extremal
solutions to boundary value problem (BVP) of nonlinear fractional order differential equations (NFDEs). By combing the method of lower and upper solution with the monotone iterative technique, we construct sufficient conditions for the iterative solutions to the problem under consideration. Some proper results related to Hyers-Ulam type stability are investigated. Base on the proposed method, we construct minimal and maximal solutions for the proposed problem. We also construct and provide maximum error estimates and test the obtain results by two examples.
376
386
Sajjad
Ali
Department of Mathematics
Abdul Wali Khan University of Mardan
Pakistan
sajjad_ali@sbbu.edu.pk
Muhammad
Arif
Department of Mathematics
Abdul Wali Khan University of Mardan
Pakistan
marifmaths@awkum.edu.pk
Durdana
Lateef
Department of Mathematics, College of Science
Taibah University
KSA
drdurdanamath@gmail.com
Mohammad
Akram
Department of Mathematics, Faculty of Science
Islamic University of Madinah
KSA
akramkhan_20@rediffmail.com
Nonlinear fractional differential equations
iterative technique
upper and lower solutions
uniqueness and existence
Article.4.pdf
[
[1]
R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ., 2009 (2009), 1-47
##[2]
R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2012), 973-1033
##[3]
N. Ahmad, Z. Ali, K. Shah, A. Zada, Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equation, Complexity, 2018 (2018), 1-15
##[4]
B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838-1843
##[5]
N. Ali, B. B. Fatima, K. Shah, R. A. Khan, Hyers-Ulam stability of a class of nonlocal boundary value problem having triple solutions, Int. J. Appl. Comput. Math., 4 (2018), 1-12
##[6]
M. Al-Refai, M. Ali Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Anal., 74 (2011), 3531-3539
##[7]
C.-Z. Bai, J.-X. Fang, The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput., 150 (2004), 611-621
##[8]
M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Applicable Anal., 87 (2008), 851-863
##[9]
S. Bushnaq, W. Hussain, K. Shah , On nonlinear implicit fractional differential equations without compactness, J. Nonlinear Sci. Appl., 10 (2017), 5528-5539
##[10]
A. Cabadal, G. T. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403-411
##[11]
C. De Coster, P. Habets, Two-point Boundary Value Problems: Lower and Upper Solutions, Elsevier B. V., Amsterdam (2006)
##[12]
V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reactiondiffusion equations, Chaos Solitons Fractals, 41 (2009), 1095-1104
##[13]
Z. M. He, X. M. He, Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. Math. Appl., 48 (2004), 73-84
##[14]
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., River Edge (2000)
##[15]
H. Khalil, K. Shah, R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progress in Fractional Differential Equations Applications, 2016 (2016), 1-10
##[16]
R. A. Khan, Existence and approximation of solutions to three-point boundary value problems for fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1-8
##[17]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006)
##[18]
G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative technique for nonlinear differential equations, Pitman Publishing Inc., Boston (1985)
##[19]
F. Li, M. Jia, X. Liu, C. Li, G. Li, Existence and uniqueness of solutions of secend-order three-point boundary value problems with upper and lower solutions in the reverse order , Nonlinear Anal., 68 (2008), 2381-2388
##[20]
F. F. Li, J. T. Sun, M. Jia, Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order, Comput. Math. Appl., 217 (2011), 4840-4847
##[21]
M. Li, J. R. Wang, D. O’Regan, Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 2017 (2017), 1-22
##[22]
X. P. Liu, M. Jia, Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl., 59 (2010), 2880-2886
##[23]
F. A. McRae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71 (2009), 6093-6096
##[24]
K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York (1993)
##[25]
I. Podlubny , Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego (1999)
##[26]
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300
##[27]
T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130
##[28]
I. A. Rus , Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103-107
##[29]
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon (1993)
##[30]
K. Shah, R. A. Khan, Iterative solutions to a coupled system of nonlinear fractional differential equations, J. Fract. Cal. Appl., 7 (2016), 40-50
##[31]
K. Shah, R. A. Khan, Iterative scheme for a coupled system of fractional-order differential equations with three-point boundary conditions , Math. Methods Appl. Sci., 41 (2018), 1047-1053
##[32]
X. Su, Boundary value problem for a coupled systemof nonlinear fractional differential equations, Appl. Math. Lett., 22 (2009), 64-69
##[33]
G. T. Wang, R. P. Agarwal, A. Cabada , Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett., 25 (2012), 1019-1024
##[34]
J. R. Wang, M. Feckan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. math., 141 (2017), 727-746
##[35]
J. R. Wang, K. Shah, A. Ali, Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Methods Appl. Sci., 41 (2018), 2392-2402
##[36]
J. H. Wang, H. J. Xiang, Z. G. Liu, Positive solution to nonzero boundary values problem for a coupled system of nonlinear fractional differential equations, Int. J. Differ. Equ., 2010 (2010), 1-12
##[37]
N. Xu, W. B. Liu, Iterative solutions for a coupled system of fractional differential-integral equations with two-point boundary conditions, Appl. Math. Comput., 244 (2014), 903-911
##[38]
W. G. Yang, Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions, Comput. Math. Appl., 63 (2012), 288-297
##[39]
E. Zeidler , Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators, Springer-Verlag, New York (1990)
##[40]
S. Q. Zhang, Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., 71 (2009), 2087-2093
]
Algorithms for Hammerstein inclusions in certain Banach spaces
Algorithms for Hammerstein inclusions in certain Banach spaces
en
en
Let \(E\) be a reflexive smooth and strictly convex real Banach space. Let \(F: E\rightarrow 2^{E^*}\) and \(K: E^*\rightarrow E\) be bounded maximal monotone mappings such that \(D(F)=E\) and \(R(F)=D(K)=E^*\). Suppose that the Hammerstein inclusion \(0\in u+KFu \) has a solution in \(E\). We present in this paper a new algorithm for approximating solutions of the inclusion \(0\in u+KFu \).
Then we prove strong convergence theorems. Our theorems improve and unify most of the results that have been proved in this direction for this important class of nonlinear mappings. Furthermore,
our technique of proof is of independent interest.
387
404
Moustapha
Sene
Gaston Berger University
Senegal
ndolanesene@yahoo.fr
Mariama
Ndiaye
Gaston Berger University
Senegal
mariama-ndiaye.diakhaby@ugb.edu.sn
Ngalla
Djitte
Gaston Berger University
Senegal
ngalla.djitte@ugb.edu.sn
Hammerstein equation
monotone
iterative algorithm
Article.5.pdf
[
[1]
N. U. Ahmed, Nonlinear integral equations on reflexive Banach spaces with applications to stochastic integral equations and abstract evolution equations, J. Integral Eqns., 1 (1979), 1-15
##[2]
Y. Alber, Generalized Projection Operators in Banach space: Properties and Applications , Functional-differential equations, 1993 (1993), 1-21
##[3]
Y. Alber , Metric and generalized Projection Operators in Banach space: properties and applications, in: Theory and applications of nonlinear operators of accretive and monotone type, 1996 (1996), 15-50
##[4]
Y. Alber, S. Guerre-Delabiere, On the projection methods for fixed point problems, Analysis (Munich), 21 (2001), 17-39
##[5]
Y. Alber, I. Ryazantseva, Nonlinear ill-Posed Problems of Monotone Type, Springer, Dordrecht (2006)
##[6]
H. Amann, Existence theorems for equations of Hammerstein type, Applicable Anal., 2 (1972/73), 385-397
##[7]
J. Appell, E. De Pascale, H. T. Hguyen, P. P. Zabrejko, Nonlinear integral inclusions of Hammerstein type, Topol. Methods Nonlinear Anal., 5 (1995), 111-124
##[8]
J. P. Aubin, A. Cellina, Differential inclusions: set-valued maps and viability theory, Springer-Verlag, Berlin (1984)
##[9]
J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, New York (1984)
##[10]
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest (1976)
##[11]
H. H. Bauschke, E. Matouskova, S. Reich, Projection and proximal point methods: convergence results and counter examples, Nonlinear Anal., 56 (2004), 715-738
##[12]
V. Berinde, Iterative approximation of fixed points, Springer, Berlin (2007)
##[13]
H. Brezis, F. E. Browder, Some new results about Hammerstein equations, Bull. Amer. Math. Soc., 80 (1974), 567-572
##[14]
H. Brezis, F. E. Browder, Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 81 (1975), 73-78
##[15]
H. Brezis, F. E. Browder, Nonlinear integral equations and systems of Hammerstein type, Advances in Math., 18 (1975), 115-147
##[16]
F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 875-882
##[17]
F. E. Browder, Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, in: Contributions to Nonlinear Functional Analysis, 1971 (1971), 425-500
##[18]
F. E. Browder, D. G. de Figueiredo, C. P. Gupta, Maximal monotone operators and a nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 76 (1970), 700-705
##[19]
F. E. Browder, C. P. Gupta, Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 75 (1969), 1347-1353
##[20]
R. E. Bruck, A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., 48 (1974), 114-126
##[21]
C. Chidume, Geometric Properties of Banach spaces and Nonlinear Iterations, Springer-Verlag, London (2009)
##[22]
C. E. Chidume, A.U. Bello , An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces, Appl. Math. Comput., 313 (2017), 408-417
##[23]
C. E. Chidume, N. Djitte , Approximation of solutions of Hammerstein equations with bounded strongly accretive nonlinear operators, Nonlinear Anal., 70 (2009), 4071-4078
##[24]
C. E. Chidume, N. Djitte, Iterative approximation of solutions of Nonlinear equations of Hammerstein type, Nonlinear Anal., 70 (2009), 4086-4092
##[25]
C. E. Chidume, N. Djitte, Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type, ISRN Math. Anal., 2012 (2012), 1-12
##[26]
C. E. Chidume, N. Djitte, Convergence Theorems for Solutions of Hammerstein Equations with Accretive-Type Nonlinear Operators, PanAmer Math. J., 22 (2012), 19-29
##[27]
C. E. Chidume, N. Djitte, An iterative method for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput., 219 (2013), 5613-5621
##[28]
C. E. Chidume, E. U. Ofoedu, Solution of nonlinear integral equations of Hammerstein type, Nonlinear Anal., 74 (2011), 4293-4299
##[29]
C. E. Chidume, M. O. Osilike , Iterative solution of nonlinear integral equations of Hammerstein type, J. Nigerian Math. Soc., 11 (1992), 9-18
##[30]
C. E. Chidume, Y. Shehu, Approximation of solutions of generalized equations of Hammerstein type, Comput. Math. Appl., 63 (2012), 966-974
##[31]
C. E. Chidume, H. Zegeye, Approximation of solutions of nonlinear equations of monotone and Hammerstein type , Appl. Anal., 82 (2003), 747-758
##[32]
C. E. Chidume, H. Zegeye , Iterative approximation of solutions of nonlinear equations of Hammerstein type, Abstr. Appl. Anal., 2003 (2003), 353-365
##[33]
C. E. Chidume, H. Zegeye, Approximation of solutions of nonlinear equations of Hammerstein type in Hilbert space, Proc. Amer. Math. Soc., 133 (2005), 851-858
##[34]
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York (1983)
##[35]
C. V. Coffman, Variational theory of set-valued Hammerstein operators in Banach spaces: The eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 633-655
##[36]
D. G. de Figueiredo, C. P. Gupta , On the variational method for the existence of solutions to nonlinear equations of Hammerstein type, Proc. Amer. Math. Soc., 40 (1973), 470-476
##[37]
N. Djitte, M. Sene, Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators, ISRN Appl. Math., 2012 (2012), 1-15
##[38]
N. Djitte, M. Sene, An Iterative Algorithm for Approximating Solutions of Hammerstein Integral Equations, Numer. Funct. Anal. Optim., 34 (2013), 1299-1316
##[39]
V. Dolezale, Monotone operators and its applications in automation and network theory, Elsevier Science Publ., New York (1979)
##[40]
K. Glashoff, J. Sprekels, An application of Glicksbergs theorem to set-valued integral equations arising in the theory of thermostats, SIAM J. Math. Anal., 12 (1981), 477-486
##[41]
A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, (German) Acta Math., 54 (1930), 117-176
##[42]
S. Kamimura, W. Takahashi , Strong convergence of proximal-type algorithm in Banach space, SIAM J. Optim., 13 (2002), 938-945
##[43]
J. B. Keller, W. E. Olmstead, Temperature of nonlinearly radiating semi-infinite solid, Quart. Appl. Math., 29 (1971/72), 559-566
##[44]
F. Kohsaka, W. Takahashi , Strong convergence of an iterative sequence for maximal monotone operator in Banach space, Abstr. Appl. Anal., 2004 (2004), 239-349
##[45]
L. Lyapin, Hammerstein inclusions, Diff. Equations, 10 (1976), 638-643
##[46]
W. R. Mann , Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510
##[47]
B. Martinet, Regularization d’inequations variationelles par approximations successives , Revue Francaise d’informatique et de Recherche operationelle, 4 (1970), 154-159
##[48]
E. U. Ofoedu, C. E. Onyi, New Implicit and explicit approximation methods for solutions of integral equations of Hammerstein type, Appl. Math. Comput., 246 (2014), 628-637
##[49]
W. E. Olmstead, R. A. Handelsman, Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Rev., 18 (1976), 275-291
##[50]
D. O’Regan, Integral equations in reflexive Banach spaces and weak topologies, Proc. Amer. Math. Soc., 124 (1996), 607-614
##[51]
D. O’Regan, Integral inclusions of upper semicontinuous or lower semicontinuous type, Proc. Amer. Math. Soc., 124 (1996), 2391-2399
##[52]
D. Pascali, S. Sburlan, Nonlinear mappings of monotone type, Martinus Nijhoff Publishers, Bucaresti (1978)
##[53]
S. Reich , Constructive techniques for accretive and monotone operators, Appl. Nonlinear Anal., 1978 (1979), 335-345
##[54]
S. Reich, A weak convergence theorem for the alternating methods with Bergman distance, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 1996 (1996), 313-318
##[55]
R. T. Rockafellar, Monotone operator and the proximal point algorithm , SIAM J. Control Optimization, 14 (1976), 877-898
##[56]
H.-K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138
##[57]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256
]
Dass and Gupta's fixed point theorem in \(\mathcal{F}\)-metric spaces
Dass and Gupta's fixed point theorem in \(\mathcal{F}\)-metric spaces
en
en
The purpose of this article is to define Dass and Gupta's contraction in the
context of \(\mathcal{F}\)-metric spaces and obtain some new fixed point
theorems to elaborate, generalize and synthesize several known results in
the literature including Jleli and Samet [M. Jleli, B. Samet,
J. Fixed Point Theory Appl., \(\textbf{20}\) (2018), 20 pages] and Dass and Gupta [B. K. Dass, S. Gupta, Indian J. Pure Appl. Math., \(\textbf{6}\) (1975),
1455--1458]. Also we have provided a non trivial example to validate our
main result.
405
411
Durdana
Lateef
Department of Mathematics, College of Science
Taibah University
Kingdom of Saudi Arabia
drdurdanamaths@gmail.com
Jamshaid
Ahmad
Department of Mathematics
University of Jeddah
Saudi Arabia
jkhan@uj.edu.sa
\(\mathcal{F}\)-metric space
fixed point
rational contraction
Article.6.pdf
[
[1]
L. A. Alnaser, D. Lateef, H. A. Fouad, J. Ahmad, Relation theoretic contraction results in F-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 337-344
##[2]
S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133-181
##[3]
B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., 6 (1975), 1455-1458
##[4]
A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Tran. A. Razmadze Math. Inst., 172 (2018), 481-490
##[5]
D. S. Jaggi , Some unique fixed point theorems, Indian J. Pure Appl. Math., 8 (1977), 223-230
##[6]
M. Jleli, B. Samet, On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., 20 (2018), 1-20
##[7]
M. S. Khan, A fixed point theorem for metric spaces, Rend. Ist. Mat. Univ. Trieste, 8 (1976), 69-72
]