]>
2019
12
5
ISSN 2008-1898
82
The type I half-logistic Burr X distribution: theory and practice
The type I half-logistic Burr X distribution: theory and practice
en
en
In this paper, we explore the properties and importance of a lifetime distribution so called type I half-logistic Burr X \(({\rm TIHL}_{BX})\) in detail (also called type I half logistic generalized Rayleigh \((\text{TIHL}_{GR})\)). We investigate some of its mathematical and statistical properties such as the explicit form of the ordinary moments, moment generating function, conditional moments, Bonferroni and Lorenz curves, mean deviations, residual life and reversed residual functions, Shannon entropy and Renyi entropy. The maximum likelihood method is used to estimate the model parameters. Simulation studies were conducted to assess the finite sample behavior of the maximum likelihood estimators. Finally, we illustrate the importance and applicability of the model by the study of two real data sets.
262
277
M.
Shrahili
Department of Statistics and Operations Research, College of Science
King Saud University
Saudi Arabia
msharahili@ksu.edu.sa
I.
Elbatal
Department of Mathematics and Statistics
College of Science Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
Saudi Arabia
iielbatal@imamu.edu.sa
Mustapha
Muhammad
Department of Mathematical Sciences, Faculty of Physical Sciences
Bayero University Kano (BUK)
Nigeria
mmmahmoud12@sci.just.edu.jo
Type I half logistic distribution
Burr X distribution
moments
maximum likelihood estimate
Article.1.pdf
[
[1]
K. E. Ahmad, M. E. Fakhry, Z. F. Jaheen, Empirical Bayes Estimation of P(Y < X) and Characterization of Burr-Type X Model, J. Statist. Plann. Inference, 64 (1997), 297-308
##[2]
M. Ahsan ul Haq, Kumaraswamy Exponentiated Inverse Rayleigh Distribution, Math. Theo. Model., 6 (2016), 93-104
##[3]
A. Alzaatreh, I. Ghosh, On the Weibull-X family of distributions, J. Stat. Theory Appl., 14 (2014), 169-183
##[4]
D. F. Andrews, A. M. Herzberg, Data: a collection of problems from many fields for the student and research worker, Springer Science Business Media, New York (2012)
##[5]
I. W. Burr, Cumulative frequency functions, Ann. Math. Statistics, 13 (1942), 215-232
##[6]
G. M. Cordeiro, M. Alizadeh, P. R. D. Marinho , The type I half-logistic family of distributions, J. Stat. Comput. Simul., 86 (2016), 707-728
##[7]
G. M. Cordeiro, C. T. Cristino, E. M. Hashimoto, E. M. M. Ortega, The beta generalized Rayleigh distribution with applications to lifetime data, Statist. Papers, 54 (2013), 133-161
##[8]
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-898
##[9]
I. Elbatal, H. Z. Muhammed , Exponentiated Generalized Inverse Weibull Distribution, Appl. Math. Sci., 8 (2014), 3997-4012
##[10]
N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods, 31 (2002), 497-512
##[11]
P. L. Gupta, R. C. Gupta , On the moments of residual life in reliability and some characterization results, Comm. Statist. A–Theory Methods, 12 (1983), 449-461
##[12]
M. A. Khaleel, N. A. Ibrahim, M. Shitan, F. Merovci , New extension of Burr type X distribution properties with application, J. King Saud University-Sci., 30 (2017), 450-457
##[13]
D. Kundu, M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., 49 (2005), 187-200
##[14]
F. Merovci, Transmuted Rayleigh Distribution, Austrian J. Stat., 42 (2013), 21-31
##[15]
F. Merovci, Transmuted generalized Rayleigh distribution, J. Statist. Appl. Prob., 3 (2014), 9-20
##[16]
F. Merovci, I. Elbatal, Weibull rayleigh distribution: Theory and applications, Appl. Math. Inf. Sci., 9 (2015), 2127-2137
##[17]
F. Merovci, M. A. Khaleel, N. A. Ibrahim, M. Shitan, The beta Burr type X distribution properties with application, SpringerPlus, 5 (2016), 1-18
##[18]
M. Muhammad, A generalization of the burrxii-poisson distribution and its applications, J. Statist. Appl. Prob., 5 (2016), 29-41
##[19]
M. Muhammad, Poisson-odd generalized exponential family of distributions: Theory and Applications, Hacettepe Univ. Bullet. Natural Sci. Eng. Ser. B Math. Statist., 47 (2016), 1-20
##[20]
M. Muhammad, Generalized Half Logistic Poisson Distributions, Comm. Statist. Appl. Methods, 24 (2017), 1-14
##[21]
M. Muhammad, The Complementary Exponentiated BurrXII Poisson Distribution: model, properties and application , J. Statist. Appl. Prob., 6 (2017), 33-48
##[22]
M. Muhammad, M. A. Yahaya, The Half Logistic Poisson Distribution, Asian J. Math. Appl., 2017 (2017), 1-15
##[23]
S. Nasiru, P. N. Mwita, O. Ngesa, Exponentiated generalized half logistic Burr X distribution, Adv. Appl. Statist., 52 (2018), 145-169
##[24]
M. Z. Raqab, D. Kundu, Burr type X distribution: revisited , JPSS J. Probab. Stat. Sci., 4 (2006), 179-193
##[25]
H. M. Reyad, S. A. Othman , The beta compound Rayleigh distribution: Properties and applications, Int. J. Adv. Statist. Prob., 5 (2017), 57-64
##[26]
R. L. Smith, J. C. Naylor, A comparison of maximum likelihood estimators for the three-parameter Weibull distribution, J. Roy. Statist. Soc. Ser. C, 36 (1987), 358-369
##[27]
J. G. Surles, W. J. Padgett, Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Anal., 7 (2001), 187-200
##[28]
J. G. Surles, W. J. Padgett, Some properties of a scaled Burr type X distribution, J. Statist. Plann. Inference, 128 (2005), 271-280
##[29]
M. H. Tahir, G. M. Cordeiro, M. Alizadeh, M. Mansoor, M. Zubair, G. G. Hamedani, The odd generalized exponential family of distributions with applications, J. Stat. Distrib. Appl., 2 (2015), 1-28
##[30]
K. Zografos, N. Balakrishnan, On families of beta-and generalized gamma-generated distributions and associated inference , Statist. Method., 6 (2009), 344-362
]
The odd inverse Pareto-G class: properties and applications
The odd inverse Pareto-G class: properties and applications
en
en
We introduce a new family of continuous distributions called the \textit{odd
inverse Pareto-G} class which extends the exponentiated-G family due to
Gupta et al. [R. C. Gupta, P. L. Gupta, R. D. Gupta, Comm. Statist. Theory Methods, \(\textbf{27}\)
(1998), 887--904] and the Marshall-Olkin-G class due to Marshall and Olkin
[A. W. Marshall, I. Olkin, Biometrika, \(\textbf{84}\) (1997), 641--652]. We define and study two special models of the proposed family which
are capable of modeling various shapes of aging and failure criteria. The
special models of this family can provide reversed J-shape, symmetric, left
skewed, right skewed, unimodal or bimodal shapes for the density function.
Some of its mathematical properties are derived. The maximum likelihood
method is used to estimate the model parameters. By means of four real data
sets we show that the special models of this family have superior
performance over several existing distributions.
278
290
Maha A.
Aldahlan
Statistics Department, Faculty of Science
Statistics Department, Faculty of Science
King Abdulaziz University
University of Jeddah
KSA
KSA
maldahlan@kau.edu.sa
Ahmed Z.
Afify
Department of Statistics, Mathematics and Insurance
Benha University
Egypt
ahmed.afify@fcom.bu.edu.eg
A-Hadi N.
Ahmed
Department of mathematical statistics, ISSR
Cairo University
Egypt
drhadi@cu.edu.eg
Generating function
inverse Pareto distribution
maximum likelihood
order statistic
Rényi entropy
Article.2.pdf
[
[1]
I. B. Abdul-Moniem, H. F. Abdel-Hameed, On exponentiated Lomax distribution, Int. J. Math. Arch., 3 (2012), 2144-2150
##[2]
A. Z. Afify, E. Altun, M. Alizadeh, G. Ozel, G. G. Hamedani , The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., 8 (2017), 65-91
##[3]
A. Z. Afify, G. M. Cordeiro, S. Nadarajah, H. M. Yousof, G. Ozel, Z. M. Nofal, E. Altun, The complementary geometric transmuted-G family of distributions: model, properties and application, Hacet. J. Math. Statist., 47 (2018), 1348-1374
##[4]
M. Alizadeh, H. M. Yousof, A. Z. Afify, G. M. Cordeiro, M. Mansoor, The Complementary Generalized Transmuted Poisson-G Family of Distributions, Austrian J. Statist., 47 (2018), 51-71
##[5]
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of distributions, Metron, 71 (2013), 63-79
##[6]
A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz. J. Probab. Stat., 30 (2016), 1-27
##[7]
A. Asgharzadeh, S. Nadarajah, F. Sharafi, Weibull Lindley distribution, REVSTAT, 16 (2018), 87-113
##[8]
M. Bourguignon, R. B. Silva, G. M. Cordeiro, The Weibull-G family of probability distributions, J. Data Sci., 12 (2014), 53-68
##[9]
G. M. Cordeiro, A. Z. Afify, E. M. M. Ortega, A. K. Suzuki, M. E. Mead, The odd Lomax generator of distributions: Properties, estimation and applications, J. Comput. Appl. Math., 347 (2019), 222-237
##[10]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, S. Cakmakyapan, G. Ozel, The Lindley Weibull Distribution: Properties and Applications, Anais da Academia Brasileira de Ciencias, 90 (2018), 2579-2598
##[11]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The exponentiated Weibull-H family of distributions: Theory and Applications, Mediterr. J. Math., 14 (2017), 1-22
##[12]
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-898
##[13]
G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, R. R. Pescim, The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput., 247 (2014), 465-486
##[14]
N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Comm. Statist. Theory Methods, 31 (2002), 497-512
##[15]
M. E. Ghitany, F. A. Al-Awadhi, L. A. Alkhalfan, Marshall–Olkin extended Lomax distribution and its application to censored data, Comm. Statist. Theory Methods, 36 (2007), 1855-1866
##[16]
M. E. Ghitany, D. K. Al-Mutairi, F. A. Al-Awadhi, M. M. Al-Burais, Marshall-Olkin extended Lindley distribution and its application, Int. J. Appl. Math., 25 (2012), 709-721
##[17]
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Comm. Statist. Theory Methods, 27 (1998), 887-904
##[18]
S. A. Kemaloglu, M. Yilmaz, Transmuted two-parameter Lindley distribution, Comm. Statist. Theory Methods, 46 (2017), 11866-11879
##[19]
S. A. Klugman, H. H. Panjer, G. E. Willmot , Loss models: from data to decisions, John Wiley & Sons, Hoboken (2012)
##[20]
D. Kundu, M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., 49 (2005), 187-200
##[21]
E. T. Lee, J. W. Wang, Statistical methods for survival data analysis: Third edition, John Wiley & Sons, Hoboken (2003)
##[22]
A. J. Lemonte, G. M. Cordeiro, An extended Lomax distribution, Statistics, 47 (2013), 800-816
##[23]
D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, 20 (1958), 102-107
##[24]
A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641-652
##[25]
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-real data, IEEE Trans. Reliab., 42 (1993), 299-302
##[26]
S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331-359
##[27]
F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375-383
##[28]
J. W. S. Rayleigh , On the resultant of a large number of vibration of the same pitch and arbitrary phase, Philosophical Magazine: Series 5, 43 (1880), 259-272
##[29]
R. Shanker, A. Mishra, A quasi Lindley distribution, African J. Math. Comput. Sci. Res., 6 (2013), 64-71
##[30]
M. H. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat., 44 (2015), 455-474
##[31]
H. Torabi, N. H. Montazari , The gamma-uniform distribution and its application , Kybernetika (Prague), 48 (2012), 16-30
##[32]
W. Weibull , A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 290-293
##[33]
K. Zografos, N. Balakrishnan, On families of beta and generalized gamma generated distributions and associated inference, Stat. Methodol., 6 (2009), 344-362
]
The odd Fréchet inverse Rayleigh distribution: statistical properties and applications
The odd Fréchet inverse Rayleigh distribution: statistical properties and applications
en
en
We propose a new distribution with two parameters called the odd Fréchet inverse Rayleigh (OFIR) distribution. The new model can be more flexible. Several of its statistical properties are studied. The maximum likelihood (ML) estimation is used to drive estimators of OFIR parameters. The importance and flexibility of the new model is assessed using one real data set.
291
299
M.
Elgarhy
Vice Presidency for Graduate Studies and Scientific Research
University of Jeddah
KSA
m_elgarhy85@yahoo.com
Sharifah
Alrajhi
Statistics Department, Faculty of Science
King Abdulaziz University
KSA
saalrajhi@kau.edu.sa
Odd Fréchet family
inverse Rayleigh distribution
moments
maximum likelihood
Article.3.pdf
[
[1]
A. Z. Afify, Z. M. Nofal, N. S. Butt, Transmuted complementary Weibull geometric distribution , Pak. J. Stat. Oper. Res., 10 (2014), 435-454
##[2]
A. Z. Afify, Z. M. Nofal, A. N. Ebraheim, Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., 11 (2015), 115-134
##[3]
A. Z. Afify, H. M. Yousof, S. Nadarajah, The beta transmuted-H family for lifetime data, Stat. Interface, 10 (2017), 505-520
##[4]
A. Ahmad, S. P. Ahmad, A. Ahmed, Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution , Math. Theo. Model., 4 (2014), 90-98
##[5]
S. J. Almalki, J. Yuan, A new modified Weibull distribution, Reliab. Eng. Syst. Safety, 111 (2013), 164-170
##[6]
G. M. Cordeiro, E. M. Hashimoto, E. M. M. Ortega, The McDonald Weibull model, Statistics, 48 (2014), 256-278
##[7]
I. Elbatal, Y. M. El Gebaly, E. A. Amin, The beta generalized inverse Weibull geometric distribution and its applications, Pak. J. Stat. Oper. Res., 13 (2017), 75-90
##[8]
M. K. Gharraph, Comparison of estimators of location measures of an inverse Rayleigh distribution, Egyptian Statist. J., 37 (1993), 295-309
##[9]
A. J. Gross, V. A. Clark, Survival distributions: Reliability applications in the biomedical sciences, John Wiley & Sons, New York, (1975), -
##[10]
M. A. Haq, Kumaraswamy exponentiated inverse Rayleigh distribution, Math. Theo. Model., 6 (2016), 93-104
##[11]
M. A. Haq, Transmuted exponentiated inverse Rayleigh distribution, J. Stat. Appl. Prob., 5 (2016), 337-343
##[12]
M. A. Haq, M. Elgarhy, The odd Frechet-G family of probability distributions, J. Stat. Appl. Prob., 7 (2018), 185-201
##[13]
A. S. Hassan, E. A. Amin, A. A. Abd-El Aziz, Estimation and prediction from inverse Rayleigh distribution based on lower record values, Appl. Math. Sci. (Ruse), 4 (2010), 3057-3066
##[14]
M. S. Khan , Modified inverse Rayleigh distribution, Int. J. Comput. Appl., 87 (2014), 28-33
##[15]
M. S. Khan, R. King, Transmuted modified inverse Rayleigh distribution, Austrian J. Statist., 44 (2015), 17-29
##[16]
J. Leao, H. Saulo, M. Bourguignon, R. Cintra, L. C. Rego, G. M. Cordeiro, On some properties of the beta inverse Rayleigh distribution, Chil. J. Stat., 4 (2013), 111-131
##[17]
C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Statist. Methods, 6 (2007), 173-186
##[18]
M. H. Tahir, M. Mansoor, M. Zubair, G. G. Hamedani , McDonald log logistic distribution with an application to breast cancer data, J. Stat. Theory Appl., 13 (2014), 65-82
##[19]
V. N. Trayer, Doklady Acad, Nauk, Belorus, U. S. S. R. (1964)
##[20]
V. G. Voda, On the inverse Rayleigh distributed random variable, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 19 (1972), 13-21
]
The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation
The local discontinuous Galerkin method with generalized alternating flux for solving Burger's equation
en
en
In this paper, we propose the local discontinuous Galerkin method based on the generalized alternating numerical flux for solving the one-dimensional nonlinear Burger's equation with Dirichlet boundary conditions. Based on the Hopf-Cole transformation, the original equation is transformed into a linear heat conduction equation with homogeneous Neumann boundary conditions. We will show that this method preserves stability. By virtue of the generalized Gauss-Radau projection, we can obtain the sub-optimal rate of convergence in \(L^2\)-norm of \(\mathcal{O}(h^{k+\frac{1}{2}})\) with polynomial of degree \(k\) and grid size \(h\). Numerical experiments are given to verify the theoretical results.
300
313
Rongpei
Zhang
School of Mathematics and Systematic Sciences
Shenyang Normal University
P. R. China
rongpeizhang@163.com
Di
Wang
School of Mathematics and Systematic Sciences
Shenyang Normal University
P. R. China
wangdisynu@gmail.com
Xijun
Yu
Laboratory of Computational Physics
Institute of Applied Physics and Computational Mathematics
P. R. China
yuxj@iapcm.ac.cn
Bo
Chen
College of Mathematics and Statistics
Shenzhen University
P. R. China
chenbo@szu.edu.cn
Zhen
Wang
College of Mathematics and Systems Science
Shandong University of Science and Technology
P. R. China
wangzhen.sd@gmail.com
Burger's equation
local discontinuous Galerkin method
Hopf-Cole transformation
generalized alternating numerical flux
generalized Gauss-Radau projection
Article.4.pdf
[
[1]
G. Arora, V. Joshi , A computational approach using modified trigonometric cubic B-spline for numerical solution of Burgers’ equation in one and two dimensions , Alex. Eng. J., 57 (2017), 1087-1098
##[2]
G. Arora, B. K. Singh, Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method, Appl. Math. Comput., 224 (2013), 166-177
##[3]
E. Ashpazzadeh, B. Han, M. Lakestani, Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation, J. Comput. Appl. Math., 317 (2017), 510-534
##[4]
A. R. Bahadir, Numerical solution for one-dimensional Burgers’ equation using a fully implicit finite-difference method, Int. J. Appl. Math., 1 (1999), 897-909
##[5]
A. R. Bahadir, M. Saglam , A mixed finite difference and boundary element approach to one-dimensional Burgers’ equation, Appl. Math. Comput., 160 (2005), 663-673
##[6]
F. Bassi, S. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations, J. Comput. Phys., 131 (1997), 267-279
##[7]
J. Caldwell, P. Wanless, A. E. Cook, A finite element approach to Burgers’ equation, Appl. Math. Modelling, 5 (1981), 189-193
##[8]
S. Q. Chen, Y.-T. Zhang, Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods, J. Comput. Phys., 230 (2011), 4336-4352
##[9]
Y. Cheng, X. Meng, Q. Zhang, Application of generalized Gauss?Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), 1233-1267
##[10]
Y. Cheng, Q. Zhang, Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem , J. Sci. Comput., 72 (2017), 792-819
##[11]
B. Cockburn, C.-W. Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463
##[12]
J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics , Quart. Appl. Math., 9 (1951), 225-236
##[13]
Y. Gao, L.-H. Le, B.-C. Shi, Numerical solution of Burgers’ equation by lattice Boltzmann method, Appl. Math. Comput., 219 (2013), 7685-7692
##[14]
E. Hopf , The partial differential equation \(u_t + u_x = vu_{xx}\), Comm. Pure Appl. Math., 3 (1950), 201-230
##[15]
P. Huang, A. Abduwali , The Modified Local Crank-Nicolson method for one-and two-dimensional Burgers’ equations , Comput. Math. Appl., 59 (2010), 2452-2463
##[16]
R. Jiwari , A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput. Phys. Commun., 188 (2015), 59-67
##[17]
R. Jiwari, R. C. Mittal, K. K. Sharma, A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation, Appl. Math. Comput., 219 (2013), 6680-6691
##[18]
A. H. Khater, R. S. Temsah, M. M. Hassan, A Chebyshev spectral collocation method for solving Burgers’-type equations, J. Comput. Appl. Math., 222 (2008), 333-350
##[19]
S. Kutluay, A. R. Bahadir, A. Özdeş , Numerical solution of one-dimensional Burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., 103 (1999), 251-262
##[20]
X. Meng, C.-W. Shu, B. Wu , Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261
##[21]
V. Mukundan, A. Awasthi , A Higher Order Numerical Implicit Method for Non-Linear Burgers’ Equation, Differ. Equ. Dyn. Syst., 25 (2017), 169-186
##[22]
T. Özdeş, E. N. Aksan, A. Özdeş, A finite element approach for solution of Burgers’ equation, Appl. Math. Comput., 139 (2003), 417-428
##[23]
M. Seydaoğlu, U. Erdoğan, T. Öziş, Numerical solution of Burgers’ equation with high order splitting methods, J. Comput. Appl. Math., 291 (2016), 410-421
##[24]
L. Shao, X. L. Feng, Y. N. He, The local discontinuous Galerkin finite element method for Burger’s equation, Math. Comput. Modelling, 54 (2011), 2943-2954
##[25]
M. Tamsir, V. K. Srivastava, R. Jiwari, An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation, Appl. Math. Comput., 290 (2016), 111-124
##[26]
H. T. Xie, J. W. Zhou, Z. Jiang, X. Y. Guo, Approximations for Burgers equations with C-N scheme and RBF collocation methods, J. Nonlinear Sci. Appl., 9 (2016), 3727-3734
##[27]
R. P. Zhang, X. J. Yu, G. Z. Zhao, The local discontinuous Galerkin method for Burger’s-Huxley and Burger’s-Fisher equations, Appl. Math. Comput., 218 (2012), 8773-8778
##[28]
R. P. Zhang, X. J. Yu, G. Z. Zhao, Modified Burgers’ equation by the local discontinuous Galerkin method, Chinese Phys. B, 22 (2013), 106-110
]
The zero truncated Poisson Burr X family of distributions with properties, characterizations, applications, and validation test
The zero truncated Poisson Burr X family of distributions with properties, characterizations, applications, and validation test
en
en
The goal of this work is to introduce a new family of continuous
distributions with a strong physical applications. Some statistical
properties are derived, and certain useful characterizations of the proposed
family of distributions are presented. Five applications are provided to
illustrate the importance of the new family. A modified goodness-of- fit
test for the new family in complete data case are investigated via two
examples. We propose, as a first step, the construction of
Nikulin-Rao-Robson statistic based on chi-squared fit tests for the new
family in the case of complete data. The new test is based on the
Nikulin-Rao-Robson statistic separately proposed by [M. S. Nikulin, Theory
Probab. Appl., \(\textbf{18}\) (1974), 559--568] and [K. C. Rao, B. S.
Robson, Comm. Statist., \(\textbf{3}\) (1974), 1139--1153]. As a second step,
an application to real data has been proposed to show the applicability of
the proposed test.
314
336
T. H. M.
Abouelmagd
Management Information System Department
Taibah University
Saudi Arabia
tabouelmagd@taibahu.edu.sa
Mohammed S.
Hamed
Management Information System Department
Taibah University
Saudi Arabia
moswilem@gmail.com
G. G.
Hamedani
Department of Mathematics, Statistics and Computer Science
Marquette University
USA
gholamhoss.hamedani@marquette.edu
M. Masoom
Ali
Department of Mathematical Sciences
Ball State University
USA
mali@bsu.edu
Hafida
Goual
Laboratory of Probability and Statistics
University of Badji Mokhtar
Algeria
goual.hafida@gmail.com
Mustafa C.
Korkmaz
Department of Measurement and Evaluation
Artvin Coruh University
TURKEY
mcagatay@artvin.edu.tr
Haitham M.
Yousof
Department of Statistics, Mathematics and Insurance
Benha University
Egypt
haitham.yousof@fcom.bu.edu.eg
Validation test
maximum likelihood estimation
generating function
moments
zero truncated Poisson
Article.5.pdf
[
[1]
T. H. M. Abouelmagd, A new flexible version of the Lomax distribution with applications, Int. J. Stat. Probab., 7 (2018), 120-132
##[2]
A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Alzaatreh, Z. M. Nofal, The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., 14 (2016), 245-270
##[3]
A. Z. Afify, Z. M. Nofal, A. N. Ebraheim, Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res., 11 (2015), 115-134
##[4]
A. Z. Afify, H. M. Yousof, G. M. Cordeiro, E. M. M. Ortega, Z. M. Nofal, The Weibull Fréchet distribution and its applications, J. Appl. Statist., 43 (2016), 2608-2626
##[5]
G. R. Aryal, H. M. Yousof , The exponentiated generalized-G Poisson family of distributions, Stoch. Qual. Control, 32 (2017), 7-23
##[6]
V. Bagdonavicius, J. Kruopis, M. S. Nikulin, Non-parametric tests for complete data, John Wiley & Sons, Hoboken (2011)
##[7]
V. Bagdonavicius, R. Levuliené, M. S. Nikulin, Q. X. Tran, On chi-squared type tests and their applications in survival analysis and reliability, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 408 (2012), 43-61
##[8]
E. Brito, G. M. Cordeiro, H. M. Yousof, M. Alizadeh, G. O. Silva, Topp-Leone Odd Log-Logistic Family of Distributions, J. Stat. Comput. Simul., 87 (2017), 3040-3058
##[9]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The exponentiated Weibull-H family of distributions: Theory & Applications, Mediterr. J. Math., 14 (2017), 1-22
##[10]
G. M. Cordeiro, E. M. Hashimoto, E. M. M. Ortega, The McDonald Weibull model, Statistics, 48 (2014), 256-278
##[11]
G. M. Cordeiro, E. M. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst., 347 (2010), 1399-1429
##[12]
G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, The Gamma-Lomax distribution, J. Stat. Comput. Simul., 85 (2015), 305-319
##[13]
G. M. Cordeiro, H. M. Yousof, T. G. Ramires, E. M. M. Ortega, The Burr XII system of densities: properties, regression model and applications, J. Stat. Comput. Simul., 88 (2018), 432-456
##[14]
F. Drost , Asymptotics for generalized chi-squared goodness-of-fit tests, CWI Tracs, Centre for Mathematics and Computer Sciences, Amsterdam (1988)
##[15]
W. Glänzel , A characterization theorem based on truncated moments and its application to some distribution families, in: Mathematical Statistics and Probability Theory, 1986 (1986), 75-84
##[16]
W. Glänzel , Some consequences of a characterization theorem based on truncated moments, Statistics, 21 (1990), 613-618
##[17]
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Comm. Statist. Theory Methods, 27 (1998), 887-904
##[18]
G. G. Hamedani, H. M. Yousof, M. Rasekhi, M. Alizadeh, S. M. Najibi , Type I general exponential class of distributions, Pak. J. Stat. Oper. Res., 14 (2018), 39-55
##[19]
G. G. Hamedani, M. Rasekhi, S. M. Najibi, H. M. Yousof, M. Alizadeh, Type II general exponential class of distributions, Pak. J. Stat. Oper. Res., forthcoming (2018)
##[20]
C. S. Kakade, D. T. Shirke, Tolerance interval for exponentiated exponential distribution based on grouped data, Int. J. Agric. Stat. Sci., 3 (2007), 625-631
##[21]
M. N. Khan, The modified beta Weibull distribution, Hacet. J. Math. Stat., 44 (2015), 1553-1568
##[22]
M. S. Khan, R. King, Transmuted modified Weibull distribution: a generalization of the modified Weibull probability distribution, Eur. J. Pure Appl. Math., 6 (2013), 66-88
##[23]
M. Ç. Korkmaz, A. I. Genç, Two-Sided Generalized Exponential Distribution, Comm. Statist. Theory Methods, 44 (2015), 5049-5070
##[24]
C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, J. Modern Appl. Statist. Methods, 6 (2007), 173-186
##[25]
A. J. Lemonte, G. M. Cordeiro, An extended Lomax distribution, Statistics, 47 (2013), 800-816
##[26]
K. S. Lomax, Business failures: Another example of the analysis of failure data, J. Amer. Statist. Assoc., 49 (1954), 847-852
##[27]
F. Merovci, M. Alizadeh, H. M. Yousof, G. G. Hamedani, The exponentiated transmuted-G family of distributions: theory and applications, Comm. Statist. Theory Methods, 46 (2017), 10800-10822
##[28]
D. N. P. Murthy, M. Xie, R. Jiang, Weibull Models, Wiley-Interscience, [John Wiley & Sons], Hoboken (2004)
##[29]
M. S. Nikulin, Chi-square test for continuous distribution with shift and scale parameters, Theory Probab. Appl., 18 (1974), 559-568
##[30]
S. B. Provost, A. Saboor, M. Ahmad , The Gamma–Weibull distribution, Pakistan J. Statist., 27 (2011), 111-131
##[31]
K. C. Rao, B. S. Robson, A chi-squabe statistic for goodies-of-fit tests within the exponential family, Comm. Statist., 3 (1974), 1139-1153
##[32]
S. Rezaei, S. Nadarajah, N. Tahghighnia, New three-parameter lifetime distribution, Statistics, 47 (2013), 835-860
##[33]
M. M. Ristic, N. Balakrishnan, The Gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82 (2012), 1191-1206
##[34]
M. H. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat., 44 (2015), 455-474
##[35]
A. W. van der Vaart, Asymptotic Statistics, Cambridge University Press, Cambridge (1998)
##[36]
V. Voinov, R. Alloyarova, N. Pya, Recent achievements in modified chi-squared goodness-of-fit testing, in: Statistical Models and Methods for Biomedical and Technical Systems, 2008 (2008), 241-258
##[37]
H. M. Yousof, A. Z. Afify, M. Alizadeh, N. S. Butt, G. G. Hamedani, M. M. Ali , The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., 11 (2015), 441-464
##[38]
H. M. Yousof, A. Z. Afify, G. G. Hamedani, G. Aryal, The Burr X generator of distributions for lifetime data, J. Stat. Theory Appl., 16 (2017), 288-305
##[39]
H. M. Yousof, M. Alizadeh, S. M. A. Jahanshahiand, T. G. Ramires, I. Ghosh, G. G. Hamedani, The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, J. Data Sci., 15 (2017), 723-740
##[40]
H. M. Yousof, E. Altun, T. G. Ramires, M. Alizadeh, M. Rasekhi , A new family of distributions with properties, regression models and applications, J. Statist. Manag. Syst., 21 (2018), 163-188
##[41]
H. M. Yousof, M. Rasekhi, A. Z. Afify, I. Ghosh, M. Alizadeh, G. G. Hamedani , The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan J. Statist., 33 (2017), 95-116
]
Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces
Relation theoretic contraction results in \(\mathcal{F}\)-metric spaces
en
en
Jleli and Samet in [M. Jleli, B. Samet,
J. Fixed Point Theory Appl., \(\textbf{20}\) (2018), 20 pages] introduced a new
metric space named as \(\mathcal{F}\)-metric space. They presented a new
version of the Banach contraction principle in the context of this
generalized metric spaces. The aim of this article is to define relation
theoretic contraction and prove some generalized fixed point theorems in \(\mathcal{F}\)-metric spaces. Our results extend, generalize, and unify several
known results in the literature.
337
344
Laila A.
Alnaser
Department of Mathematics, College of Science
Taibah University
Kingdom of Saudi Arabia
alnaser_layla@yahoo.com
Durdana
Lateef
Department of Mathematics, College of Science
Taibah University
Kingdom of Saudi Arabia
drdurdanamaths@gmail.com
Hoda A.
Fouad
Department of Mathematics, College of Science
Department of Mathematics and Computer Science, Faculty of Science
Taibah University
Alexandria University
Kingdom of Saudi Arabia
Egypt
hoda_rg@yahoo.com
Jamshaid
Ahmad
Department of Mathematics
University of Jeddah
Saudi Arabia
jkhan@uj.edu.sa
\(\mathcal{F}\)-metric space
relation theoretic contractions
fixed point
binary relation
Article.6.pdf
[
[1]
J. Ahmad, A. Al-Rawashdeh, A. Azam, Fixed point results for \(\{\alpha,\xi\}\)-expansive locally contractive mappings , J. Inequal. Appl., 2014 (2014), 1-10
##[2]
J. Ahmad, A. Al-Rawashdeh, A. Azam, New Fixed Point Theorems for Generalized F–Contractions in Complete Metric Spaces, Fixed Point Theory Appl., 2015 (2015), 1-18
##[3]
A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693-702
##[4]
L. A. Alnaser, D. Lateef, J. Ahmad, Some new fixed point theorems for compatible mappings in partial metric spaces, J. Math. Computer Sci., 18 (2018), 346-356
##[5]
A. Al-Rawashdeh, J. Ahmad , Common Fixed Point Theorems for JS- Contractions, Bull. Math. Anal. Appl., 8 (2016), 12-22
##[6]
Z. Aslam, J. Ahmad, N. Sultana, New common fixed point theorems for cyclic compatible contractions, J. Math. Anal., 8 (2017), 1-12
##[7]
S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133-181
##[8]
M. Berzig , Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point theorem, Appl. Math. Lett., 25 (2012), 1638-1643
##[9]
M. Berzig, B. Samet, Solving systems of nonlinear matrix equations involving lipshitzian mappings, Fixed Point Theory Appl., 2011 (2011), 1-10
##[10]
M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79
##[11]
A. Hussain, T. Kanwal , Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Ins., 172 (2018), 481-490
##[12]
N. Hussain, V. Parvaneh, B. Samet, C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2015 (2015), 1-17
##[13]
I. Iqbal, N. Hussain, N. Sultana, Fixed Points of Multivalued Non-Linear F–Contractions with Application to Solution of Matrix Equations, Filomat, 31 (2017), 3319-3333
##[14]
M. Jleli, B. Samet, On a new generalization of Metric Spaces, J. Fixed Point Theory Appl., 20 (2018), 1-20
##[15]
B. Kolman, R. C. Busby, S. Ross, Discrete Mathematical Structures, 3rd ed., PHI Pvt. Ltd., New Delhi (2000)
##[16]
D. Lateef, J. Ahmad, A. E. Al-Mazrooei, Common Fixed Point Theorems For Generalized Contractions, J. Math. Anal., 8 (2017), 157-166
##[17]
S. Lipschutz, Schaums Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York (1964)
##[18]
J.-H. Long, X.-Y. Hu, L. Zhang, On the hermitian positive defnite solution of the nonlinear matrix equation \(x + a^*x - 1a + b^*x - 1 b = i\) , Bull. Braz. Math. Soc., 39 (2008), 371-386
##[19]
J. J. Nieto, R. Rodrıguez-L ópez , Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239
##[20]
W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei, P. Kumam, Fixed points of a \(\Theta\)–contraction on metric spaces with a graph, Commun. Nonlinear Anal., 2 (2016), 139-149
##[21]
A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 2004 (2004), 1435-1443
##[22]
T. Rasham, A. Shoaib, N. Hussain, M. Arshad, S. U. Khan, Common fixed point results for new Ciric-type rational multivalued F–contraction with an application, J. Fixed Point Theory Appl., 20 (2018), 1-16
##[23]
A. F. Roldán López de Hierro, A unified version of Ran and Reurings theorem and Nieto and Rodríguez-Lópezs theorem and low-dimensional generalizations, Appl. Math. Inf. Sci., 10 (2016), 383-393
##[24]
B. Samet, C. Vetro, Coupled fixed point, F–invariant set and fixed point of N-order, Ann. Funct. Anal., 1 (2010), 46-56
##[25]
K. Sawangsup, W. Sintunavarat, A. F. Roldán López de Hierro, Fixed point theorems for FR–contractions with applications to solution of nonlinear matrix equations, J. Fixed Point Theory Appl., 19 (2017), 1711-1725
##[26]
A. Shoaib, A. Asif, M. Arshad, E. Ameer, Generalized Dynamic Process for Generalized Multivalued F–contraction of Hardy Rogers Type in b-metric Spaces, Turkish J. Anal. Number Theory, 6 (2018), 43-48
##[27]
M. Turinici, Ran-Reurings fixed point results in ordered metric spaces, Libertas Math., 31 (2011), 49-55
##[28]
M. Turinici, Nieto-Lopez theorems in ordered metric spaces, Math. Student, 81 (2012), 219-229
]