]>
2018
11
12
ISSN 2008-1898
97
Timer option pricing of stochastic volatility model with changing coefficients under time-varying interest rate
Timer option pricing of stochastic volatility model with changing coefficients under time-varying interest rate
en
en
Considering economic variables changing from time to time, the time-varying models can fit the financial data better. In this paper, we construct stochastic volatility models with time-varying coefficients. Furthermore, the interest rate risk is one of important factors for timer options pricing. Therefore, we study the timer options pricing for stochastic volatility models with changing coefficients under time-varying interest rate. Firstly, the partial differential equation boundary value problem is given by using \(\Delta\)-hedging approach and replicating a timer option. Secondly, we obtain the joint distribution of the variance process and the random maturity under the risk neutral probability measure. Thirdly, the explicit formula of timer option pricing is proposed which can be applied to the financial market directly. Finally, numerical analysis is conducted to show the performance of timer option pricing proposed.
1294
1301
Jixia
Wang
College of Mathematics and Information Science
Henan Normal University
China
jixiawang@163.com
Dongyun
Zhang
Business School
Henan Normal University
China
dongyunzhang@163.com
Timer option pricing
stochastic volatility model
risk neutral measure
\(\Delta\)-hedging
time-varying interest rate
Article.1.pdf
[
[1]
C. Bernard, Z. Cui , Pricing Timer Options, J. Comput. Finance, 15 (2011), 69-104
##[2]
A. Bick , Quadratic-variation-based dynamic strategies , Manage. Sci., 41 (1995), 722-732
##[3]
M. Broadie, J. B. Detemple, Anniversary article: Option pricing: Valuation models and applications, Manage. Sci., 50 (2004), 1145-1177
##[4]
M. Broadie, A. Jain, Pricing and Hedging Volatility Derivatives, The Journal of Derivatives, 15 (2008), 7-24
##[5]
P. Carr, R. Lee, Hedging variance options on continuous semimartingales, Finance Stoch., 14 (2010), 179-207
##[6]
J. C. Cox, J. Ingersoll, E. Jonathan, S. A. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, 53 (1985), 385-407
##[7]
D. Duffie, P. Glynn , Efficient Monte Carlo Simulation of Security Prices, Ann. Appl. Probab., 5 (1995), 897-905
##[8]
R. Frey, C. A. Sin, Bounds on European Option Prices under Stochastic Volatility, Math. Finance, 9 (1999), 97-116
##[9]
S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Rev. Financ. Stud., 6 (1993), 327-343
##[10]
J. C. Hull, A. D. White, The pricing of options on Assets with Stochastic Volatilities, J. Finance, 42 (1998), 281-300
##[11]
C. Li, Bessel Process, Stochastic Volatility and Timer Options, Math. Finance, 26 (2016), 122-148
##[12]
M. Li, F. Mercurio, Closed Form Approximation of Timer Option Prices Under General Stochastic Volatility Models, University Library of Munich, 2013 (2013), 1-44
##[13]
A. J. Neuberger, Volatility Trading, Londan Business School, London (1990)
##[14]
D. Saunders, Pricing Timer Options Under Fast Mean-reverting Stochastic Volatility, Can. Appl. Math. Q., 17 (2009), 737-753
##[15]
S. E. Shreve , Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer-Verlag, New York (2004)
]
Numerical solution for a nonlinear obstacle problem
Numerical solution for a nonlinear obstacle problem
en
en
A monotone iterations algorithm combined with the finite difference method is constructed for an obstacle
problem with semilinear elliptic partial differential equations of second order. By means of Dirac delta
function to improve the computation procedure of the
discretization, the finite difference method is still practicable even though the obstacle boundary is irregular. The numerical simulations show that our proposed methods are feasible and effective for the nonlinear obstacle problem.
1302
1312
Ling
Rao
Department of Mathematics
Nanjing University of Science and Technology
China
lingrao@sina.com.cn
Shih-Sen
Chang
Center for General Educatin
China Medical University
Taiwan
changss2013@163.com
Finite difference method
nonlinear obstacle problem
variational inequality
elliptic partial differential equation
Article.2.pdf
[
[1]
D. Boffi, L. Gastaldi, A finite element approach for the immersed boundary method, Comput. Structures, 81 (2003), 491-501
##[2]
H.-F. Chan, C.-M. Fan, C.-W. Kuo, Generalized finite difference method for solving two-dimensional non-linear obstacle problems, Eng. Anal. Bound. Elem., 37 (2013), 1189-1196
##[3]
S. A. Enriquez-Remigio, A. M. Roma, Incompressible flows in elastic domains: an immersed boundary method approach, Appl. Math. Model., 29 (2005), 35-54
##[4]
R. Glowinski, J.-L. Lions, R. Tremolieres, Numerical analysis of variational inequalities , North-Holland Publishing Co., Amsterdam-New York (1976)
##[5]
R. Glowinski, T.-W. Pan, J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (1994), 283-303
##[6]
P. Korman, A. W. Leung, S. Stojanovic, Monotone iterations for nonlinear obstacle problem, J. Austral. Math. Soc. Ser. B, 31 (1990), 259-276
##[7]
C. S. Peskin, Numerical analysis of blood flow in the heart, J. Computational Phys., 25 (1977), 220-252
##[8]
C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479-517
##[9]
L. Rao, H. Q. Chen, The technique of the immersed boundary method: application to solving shape optimization problem, J. Appl. Math. Phy., 5 (2017), 329-340
##[10]
V. K. Saulev, On the solution of some boundary value problems on high performance computers by fictitious domain method, Siberian Math. J., 4 (1963), 912-925
##[11]
A. L. F. L. E. Silva, A. Silveira-Neto, J. J. R. Damasceno , Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Computational Phys., 189 (2003), 351-370
]
Traveling waves for a diffusive SIR model with delay and nonlinear incidence
Traveling waves for a diffusive SIR model with delay and nonlinear incidence
en
en
This paper is concerned with the existence and non-existence of traveling wave solutions for a diffusive SIR model with delay and nonlinear incidence. First, we construct a pair of upper and lower solutions and a bounded cone. Then we prove the existence of traveling wave by using Schauder's fixed point theorem and constructing a suitable Lyapunov functional. The nonexistence of traveling wave is obtained by two-sided Laplace transform. Moreover, numerical simulations support the theoretical results. Finally, we also obtain that the minimal wave speed is decreasing with respect to the latent period and increasing with respect to the diffusion rate of infected individuals.
1313
1330
Yanmei
Wang
School of Mathematical Sciences
School of Applied Mathematics
Shanxi University
Shanxi University of Finance and Economics
China
China
Guirong
Liu
School of Mathematical Sciences
Shanxi University
China
lgr5791@sxu.edu.cn
Aimin
Zhao
School of Mathematical Sciences
Shanxi University
China
SIR model
traveling wave
time delay
nonlinear incidence
Article.3.pdf
[
[1]
Z. G. Bai, S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221-232
##[2]
E. Beretta, T. Hara, W. Ma, Y. Takeuchi , Global asymptotic stability of an SIR epidemic model with distributed time delay , Nonlinear Anal., 47 (2001), 4107-4115
##[3]
J. Fang, J. J. Wei, X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differential Equations, 245 (2008), 2749-2770
##[4]
S.-C. Fu , Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37
##[5]
Y. Hosono, B. Ilyas, Traveling waves for a simple diffusive epidemic model , Math. Models Methods Appl. Sci., 5 (1995), 935-966
##[6]
G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207
##[7]
W. O. Kermack, A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A, 115 (1927), 700-721
##[8]
A. Korobeinikov , Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886
##[9]
A. Korobeinikov , Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615-626
##[10]
A. Korobeinikov, P. K. Maini , Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128
##[11]
W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591
##[12]
S. G. Ruan, W. D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163
##[13]
M. A. Safi, A. B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, Nonlinear Anal. Real World Appl., 12 (2011), 215-235
##[14]
Y. Takeuchi, W. Ma, E. Beretta , Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal. Ser. A: Theory Methods, 42 (2000), 931-947
##[15]
P. X. Weng, X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296
##[16]
C. F. Wu, P. X. Weng, Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 867-892
##[17]
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Anal., 111 (2014), 66-81
##[18]
R. Xu, Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real World Appl., 10 (2009), 3175-3189
]
Using differentiation matrices for pseudospectral method solve Duffing Oscillator
Using differentiation matrices for pseudospectral method solve Duffing Oscillator
en
en
This article presents an approximate numerical solution for nonlinear Duffing Oscillators by pseudospectral (PS) method to compare boundary conditions on the interval [-1, 1]. In the PS method, we have been used differentiation matrix for Chebyshev points to calculate numerical results for nonlinear Duffing Oscillators. The results of the comparison show that this solution had the high degree of accuracy and very small errors. The software used for the calculations in this study was Mathematica V.10.4.
1331
1336
L. A.
Nhat
PhD student of
Lecture at Tan
RUDN University
Trao University
Russia
Vietnam
leanhnhat@tuyenquang.edu.vn
Duffing oscillator
pseudospectral methods
differential matrix
Duffing system
Chebyshev points
Article.4.pdf
[
[1]
M. A. Al-Jawary, S. G. Abd-Al-Razaq, Analytic and numerical solution for duffing equations, Int. J. Basic Appl. Sci. , 5 (2016), 115-119
##[2]
B. Bulbul, M. Sezer, Numerical Solution of Duffing Equation by Using an Improved Taylor Matrix Method, J. Appl. Math., 2013 (2013), 1-6
##[3]
W. S. Don, A. Solomonoff, Accuracy and speed in computing the Chebyshev collocation derivative, SIAM J. Sci. Comput., 16 (1995), 1253-1268
##[4]
A. Elias-Ziga, O. Martnez-Romero, R. K. Crdoba-Daz, Approximate Solution for the Duffing–Harmonic Oscillator by the Enhanced Cubication Method, Math. Probl. Eng., 2012 (2012), 1-12
##[5]
A. O. El-Nady, M. M. A. Lashin, Approximate Solution of Nonlinear Duffing Oscillator Using Taylor Expansion, J. Mech. Engi. Auto., 6 (2016), 110-116
##[6]
A. M. El-Naggar, G. M. Ismail , Analytical solution of strongly nonlinear Duffing Oscillators, Alex. Engi. Jour., 55 (2016), 1581-1585
##[7]
R. H. Enns, G. C. McGuire, Nonlinear Physics with Mathematica for Scientists and Engineers, Birkhauser Basel, Boston (2001)
##[8]
M. Gorji-Bandpy, M. A. Azimi, M. M. Mostofi , Analytical methods to a generalized Duffing oscillator, Australian J. Basic Appl. Sci., 5 (2011), 788-796
##[9]
M. A. Hosen, M. S. H. Chowdhury, M. Y. Ali, A. F. Ismail, An analytical approximation technique for the duffing oscillator based on the energy balance method , Ital. J. Pure Appl. Math., 37 (2017), 455-466
##[10]
H.-Y. Lin, C.-C. Yen, K.-C. Jen, K. C. Jea, A Postverification Method for Solving Forced Duffing Oscillator Problems without Prescribed Periods, J. Appl. Math., 2014 (2014), 1-10
##[11]
J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL (2003)
##[12]
S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Scientia Iranica, 20 (2013), 364-368
##[13]
A. Pinelli, C. Benocci, M. Deville , A Chebyshev collocation algorithm for the solution of advection–diffusion equations, Comput. Methods Appl. Mech. Engrg., 116 (1994), 201-210
##[14]
M. Razzaghi, G. Elnagar , Numerical solution of the controlled Duffing oscillator by the pseudospectral method, J. Comput. Appl. Math., 56 (1994), 253-261
##[15]
A. Saadatmandi, F. Mashhadi-Fini , A pseudospectral method for nonlinear Duffing equation involving both integral and nonintegral forcing terms, Math. Methods Appl. Sci., 38 (2015), 1265-1272
##[16]
A. H. Salas, J. E. Castillo H., Exact Solution to Duffing Equation and the Pendulum Equation, Appl. Math. Sci., 8 (2014), 8781-8789
]
Behavior analysis for a size-structured population model with Logistic term and periodic vital rates
Behavior analysis for a size-structured population model with Logistic term and periodic vital rates
en
en
In this paper, we investigate the large-time behavior of a nonlinear size-structured population model with logistic term and \(T\)-periodic vital rates. We establish the existence of a unique non-negative solution of the given model with the given initial distribution. We prove that there exists at most two \(T\)-periodic non-negative solutions (one of them being the trivial one) of the periodic model associated with the given model. We show that for any initial distribution of population the solution of the given model tends to the nontrivial non-negative \(T\)-periodic solution of the associated model. At last, we
give the numerical tests, which are used to demonstrate the effectiveness of the theoretical results in our paper.
1337
1354
Rong
Liu
School of Mathematical Sciences
Shanxi University
China
Guirong
Liu
School of Mathematical Sciences
Shanxi University
China
lgr5791@sxu.edu.cn
Behavior analysis
logistic term
periodic vital rates
size-structure
Article.5.pdf
[
[1]
Z. Abo-Hammour, O. A. Arqub, S. Momani, N. Shawagfeh , Optimization solution of Troesch’s and Bratu’s problems of ordinary type using novel continuous genetic algorithm , Discrete Dyn. Nat. Soc., 2014 (2014), 1-15
##[2]
O. Acana, M. M. A. Qurashib, D. Baleanu, New exact solution of generalized biological population model, J. Nonlinear Sci. Appl., 10 (2017), 3916-3929
##[3]
M. Al-Smadi, O. A. Arqub, N. Shawagfeh, S. Momani, Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method, Appl. Math. Comput., 291 (2016), 137-148
##[4]
M. Al-Smadi, A. Freihat, O. A. Arqub, N. Shawagfeh, A novel multistep generalized differential transform method for solving fractional-order Lü chaotic and hyperchaotic systems, J. Computat. Anal. Appl., 19 (2015), 713-724
##[5]
S. Aniţa, Analysis and control of age-dependent population dynamics, Kluwer Academic Publishers, Dordrecht (2000)
##[6]
L.-I. Aniţa, S. Aniţa , Note on some periodic optimal harvesting problems for age-structured population dynamics, Appl. Math. Comput., 276 (2016), 21-30
##[7]
L.-I. Aniţa, S. Aniţa, V. Arnăutu, Global behavior for age-dependent population model with logistic term and periodic vital rates, Appl. Math. Comput., 206 (2008), 368-379
##[8]
L.-I. Aniţa, S. Aniţa, V. Arnăutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl. Math. Comput., 215 (2009), 2701-2715
##[9]
O. A. Arqub, An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations, J. Comput. Anal. Appl., 8 (2015), 857-874
##[10]
O. A. Arqub , Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fund. Inform., 146 (2016), 231-254
##[11]
O. A. Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Compu. Math. Appl., 73 (2017), 1243-1261
##[12]
S. Bhattacharya, M. Martcheva, Oscillation in a size-structured prey-predator model, Math. Biosci., 228 (2010), 31-44
##[13]
H. Caswell , Matrix population models: construction, analysis and interpretation, Sinauer Associations, Sunderland (2001)
##[14]
W. L. Chan, B. Z. Guo, Global behaviour of age-dependent logistic population models, J. Math. Biol., 28 (1990), 225-235
##[15]
W. L. Chan, B. Z. Guo, Optimal birth control of population dynamics II. Problem with free final time, phase constraints, and min-max costs , J. Math. Anal. Appl., 146 (1990), 523-539
##[16]
A. L. Dawidowicz, A. Poskrobko, Age-dependent single-species population dynamics with delayed argument , Math. Methods Appl. Sci., 33 (2010), 1122-1135
##[17]
A. L. Dawidowicz, A. Poskrobko, Stability of the age-dependent system with delayed dependence of the structure, Math. Methods Appl. Sci., 37 (2013), 1240-1248
##[18]
B. Ebenman, L. Persson, Size-structured populations: ecology and evolution, Springer-Verlag, Berlin (1988)
##[19]
J. Z. Farkas, T. Hagen, Asymptotic behavior of size-structured populations via juvenile-adult interaction, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 249-266
##[20]
X. L. Fu, D. M. Zhu, Stability results for a size-structured population model with delayed birth process, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 109-131
##[21]
Z.-R. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real World Appl., 13 (2012), 1369-1378
##[22]
Z.-R. He, R. Liu, Theory of optimal harvesting for a nonlinear size-structured population in periodic environments, Int. J. Biomath., 7 (2014), 1-18
##[23]
M. Iannelli, Mathematical theory of age-structured population dynamics, Giardini Editori, Pisa (1995)
##[24]
N. Kato , Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388-1398
##[25]
M. Kubo, M. Langlais, Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure, J. Differential Equations, 109 (1994), 274-294
##[26]
Y. Liu, Z.-R. He , Behavioral analysis of a nonlinear three-staged population model with age-size-structure, Appl. Math. Comput., 227 (2014), 437-448
##[27]
R. Liu, G. R. Liu , Optimal birth control problems for a nonlinear vermin population model with size-structure, J. Math. Anal. Appl., 449 (2017), 265-291
##[28]
P. Magal, S. Ruan, Structured-population models in biology and epidemiology, Springer-Verlag, Berlin (2008)
##[29]
T. McMahon, Size and shape in biology: elastic criteria impose limits on biological proportions, and consequently on metabolic rates, Science, 179 (1973), 1201-1204
##[30]
S. Piazzera, An age-dependent population equation with delayed birth process, Math. Meth. Appl. Sci., 27 (2004), 427-439
##[31]
N. Shawagfeh, O. A. Arqub, S. Momani , Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method, J. Comput. Anal. Appl., 16 (2014), 750-762
##[32]
H. R. Thieme, Mathematics in population biology, Princeton University Press, New Jersey (2003)
##[33]
W. J. Wang, H. Feng , On the dynamics of positive solutions for the difference equation in a new population model, J. Nonlinear Sci. Appl., 9 (2016), 1748-1754
##[34]
E. E. Werner, J. F. Gillian, The ontogenetic niche and species interactions in size-structured populations, Ann. Rev. Ecol. Syst., 15 (1984), 393-425
]
Nonlinear perturbed difference equations
Nonlinear perturbed difference equations
en
en
The paper reports on an iteration algorithm to compute asymptotic solutions at any order for a wide class of nonlinear singularly perturbed difference equations.
1355
1362
Tahia
Zerizer
Mathematics Department, College of Sciences
Jazan University
Kingdom of Saudi Arabia
tzerizer@gmail.com;tzerizer@yahoo.fr
Perturbed difference equations
computational methods
boundary value problem
asymptotic expansions
iterative method
Article.6.pdf
[
[1]
C. Comstock, G. C. Hsiao, Singular Perturbations for Difference Equations, Rocky Mountain J. Math., 6 (1976), 561-567
##[2]
F. C. Hoppensteadt, W. L. Miranker, Multitime methods for systems of difference equations, Studies in Appl. Math., 56 (1977), 273-289
##[3]
L. Jodar, J. L. Morera , Singular Perturbations for Systems of Difference Equations, Appl. Math. Lett., 3 (1990), 51-54
##[4]
W. G. Kelley, Singularly perturbed difference equations , J. Differ. Equations Appl., 5 (1999), 97-110
##[5]
S. G. Krantz, H. R. Parks, The Implicit Function Theorem: History, Theory, and Applications, Birkhäuser, Boston (2003)
##[6]
R. L. Mishkov, Generalization of the Formula of Faa Di Bruno for a Composite Function with a Vector Argument, Int. J. Math. Math. Sci., 24 (2000), 481-491
##[7]
D. S. Naidu, A. K. Rao , Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin (1985)
##[8]
M. Rafei, W. T. Van Horssen , Solving systems of nonlinear difference equations by the multiple scales perturbation method, Nonlinear Dynam., 69 (2012), 1509-1516
##[9]
H. J. Reinhardt , On asymptotic expansions in nonlinear, singularly perturbed difference equations, Numer. Funct. Anal. Optim., 1 (1979), 565-587
##[10]
T. Sari, T. Zerizer , Perturbations for Linear Difference Equations, J. Math. Anal. Appl., 305 (2005), 43-52
##[11]
M. Suzuki , Singular perturbation for difference equations, Nonlinear Anal. Theory Methods Appl., 47 (2001), 4083-4093
##[12]
W. T. Van Horssen, M. C. ter Brake , On the multiple scales perturbation method for difference equations, Nonlinear Dynam., 55 (2009), 401-418
##[13]
T. Zerizer, Perturbation Method for Linear Difference Equations with Small Parameters, Adv. Differ. Equ., 11 (2006), 1-12
##[14]
T. Zerizer, Perturbation Method for a Class of Singularly Perturbed Systems , Adv. Dyn. Syst. Appl., 9 (2014), 239-248
##[15]
T. Zerizer, Boundary Value Problems for Linear Singularly Perturbed Discrete Systems, Adv. Dyn. Syst. Appl., 10 (2015), 215-224
##[16]
T. Zerizer , Problems for a Linear Two-Time-Scale Discrete Model, Adv. Dyn. Syst. Appl., 10 (2015), 85-96
##[17]
T. Zerizer , Boundary Value Problem for a Three-Time-Scale Singularly Perturbed Discrete System , Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 23 (2016), 263-272
##[18]
T. Zerizer, A Class of Multi-Scales Nonlinear Difference Equations, Appl. Math. Sci., 12 (2018), 911-919
##[19]
T. Zerizer, A Class of Nonlinear Perturbed Difference Equations, Int. J. Math. Anal., 12 (2018), 235-243
]
Global existence and blow-up behavior for a degenerate and singular parabolic equation with nonlocal boundary condition
Global existence and blow-up behavior for a degenerate and singular parabolic equation with nonlocal boundary condition
en
en
The aim of this article is to investigate the global existence and blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Furthermore, under some appropriate hypotheses, the precise blow-up rate estimate and the uniform blow-up profile of the blow-up solutions are discussed.
1363
1373
Dengming
Liu
School of Mathematics and Computational Science
Hunan University of Science and Technology
People's Republic of China
liudengming08@163.com;liudengming@hnust.edu.cn
Degenerate and singular parabolic equation
global existence
blow-up
blow-up rate
uniform blow-up profile
Article.7.pdf
[
[1]
C. Budd, V. A. Galaktionov, J. Chen , Focusing blow-up for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 965-992
##[2]
C. Y. Chan, C. S. Chen, A numerical method for semilinear singular parabolic quenching problem, Quart. Appl. Math., 47 (1989), 45-57
##[3]
Y. P. Chen, Q. L. Lin, C. H. Xie, The blow-up properties for a degenerate semilinear parabolic equation with nonlocal source, Appl. Math. J. Chinese Unvi. Ser. B, 17 (2002), 413-424
##[4]
Y. P. Chen, L. H. Liu, The blow-up profile for a nonlocal nonlinear parabolic equation with a nonlocal boundary condition, Quart. Appl. Math., 70 (2012), 759-772
##[5]
Y. P. Chen, Q. L. Liu, C. H. Xie, Blow-up for degenerate parabolic equation with nonlocal source, Proc. Amer. Math. Soc., 132 (2003), 135-145
##[6]
K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math., 50 (1992), 517-522
##[7]
A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447
##[8]
Y. Z. Gao, W. J. Gao, Existence and blow-up of solutions for a porous medium equation with nonlocal boundary condition, Appl. Anal., 90 (2011), 799-809
##[9]
A. Gladkov, M. Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition, Nonlinear Anal., 74 (2011), 4573-4580
##[10]
A. Gladkov, M. Guedda, Semilinear heat equation with absorption and a nonlocal boundary condition, Appl. Anal., 91 (2012), 2267-2276
##[11]
A. Gladkov, A. I. Nikitin, On the existence of global solutions of a system of semilinear parabolic equations with nonlinear nonlocal boundary conditions, Differ. Equ., 52 (2016), 467-482
##[12]
F. Liang, Global existence and blow-up for a degenerate reaction-diffusion system with nonlinear localized sources and nonlocal boundary conditions, J. Korean Math. Soc., 53 (2016), 27-43
##[13]
Z. G. Lin, Y. R. Liu, Uniform blowup profiles for diffusion equations with nonlocal source and nonlocal boundary, Acta Math. Sci. Ser. B (Engl. Ed.), 24 (2004), 443-450
##[14]
D. M. Liu, Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition, J. Nonlinear Sci. Appl., 9 (2016), 208-218
##[15]
D. M. Liu, J. Ma , Blowup singularity for a degenerate and singular parabolic equation with nonlocal boundary, J. Comput. Anal. Appl., 23 (2017), 833-846
##[16]
N. W. Mclachlan, Bessel Functions For Engineers, Clarendon Press, Oxford (1955)
##[17]
C. L. Mu, D. M. Liu, Y. S. Mi , Blow-up for a degenerate parabolic equation with nonlocal source and nonlocal boundary, Appl. Anal., 90 (2011), 1373-1389
##[18]
P. Souplet , Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations, 153 (1999), 374-406
##[19]
L. Yan, X. J. Song, C. L. Mu, Global existence and blow-up for weakly coupled degenerate and singular equations with nonlocal sources, Appl. Anal., 94 (2015), 1624-1648
##[20]
J. Zhou, Global existence and blowup for a degenerate and singular parabolic system with nonlocal source and absorptions, Z. Angew. Math. Phys., 65 (2014), 449-469
##[21]
J. Zhou, C. L. Mu, Blowup for a degenerate and singular parabolic equation with non-local source and absorption, Glasg. Math. J., 52 (2010), 209-225
##[22]
J. Zhou, D. Yang, Blowup for a degenerate and singular parabolic equation with nonlocal source and nonlocal boundary, Appl. Math. Comput., 256 (2015), 881-884
]
The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
The implicit midpoint rule of nonexpansive mappings and applications in uniformly smooth Banach spaces
en
en
Let \(K\) be a nonempty closed convex subset of a Banach space \(E\) and \(T: K\rightarrow K\) be a nonexpansive mapping. Using a viscosity approximation method, we study the implicit midpoint rule of a nonexpansive mapping \(T.\) We establish a strong convergence theorem for an iterative algorithm in the framework of uniformly smooth Banach spaces and apply our result to obtain the solutions of an accretive mapping and a variational inequality problem. The numerical example which compares the rates of convergence shows that the iterative algorithm is the most efficient. Our result is unique and the method of proof is of independent interest.
1374
1391
M. O.
Aibinu
School of Mathematics, Statistics and Computer Science
DST-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)
University of KwaZulu-Natal
South Africa
South Africa
moaibinu@yahoo.com;216040407@stu.ukzn.ac.za
P.
Pillay
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
South Africa
J. O.
Olaleru
Department of Mathematics, Faculty of Science
University of Lagos
Nigeria
O. T.
Mewomo
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
South Africa
Viscosity technique
implicit midpoint rule
nonexpansive
accretive
variational inequality problem
Article.8.pdf
[
[1]
M. O. Aibinu, O. T. Mewomo, Algorithm for Zeros of monotone maps in Banach spaces, Proceedings of Southern Africa Mathematical Sciences Association (SAMSA2016) Annual Conference, 2017 (2017), 35-44
##[2]
M. O. Aibinu, O. T. Mewomo, Strong convergence theorems for strongly monotone mappings in Banach spaces, to appear in Boletim da Sociedade Paranaense de Matemática, (Accepted), -
##[3]
M. A. Alghamdi, N. Shahzad, H.-K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 2014 (2014), 1-9
##[4]
K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 2350-2360
##[5]
W. Auzinger, R. Frank, Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., 56 (1989), 469-499
##[6]
G. Bader, P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 41 (1983), 373-398
##[7]
C. E. Chidume, S. A. Mutangandura, An example on the Mann iteration method for Lipscitz pseudocontractions, Proc. Amer. Math. Soc., 129 (2001), 2359-2363
##[8]
I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic, Dordrecht (1990)
##[9]
B. Halpern , Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957-961
##[10]
J. Hrabalova, P. Tomasek, On stability regions of the modified midpoint method for a linear delay differential equation, Adv. Differ. Equ., 2013 (2013), 1-10
##[11]
L.-G. Hu, J.-P. Wang, Mann iteration of weak convergence theorems in Banach space, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), 217-224
##[12]
S. Imnang, S. Suantai , Strong convergence of a viscosity iterative algorithm in Banach spaces with applications, Appl. Math. Sci., 10 (2016), 2589-2609
##[13]
J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 302 (2005), 509-520
##[14]
P. Katchang, P. Kumam, Convergence of iterative algorithm for finding common solution of fixed points and general system of variational inequalities for two accretive operators, Thai J. Math., 9 (2011), 343-360
##[15]
P. Luo, G. Cai, Y. Shehu, The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces, J. Inequal. Appl., 2017 (2017), 1-12
##[16]
A. Moudafi , Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55
##[17]
A. Nandal, R. Chugh, A new strong convergence Theorem for Lipschitzian strongly pseudocontractive Mappings in a real Banach space, Int. J. Math. Tren. Tech., 41 (2017), 205-209
##[18]
X. L. Y. Qin, J. Cho, S. M. Kang, H. Y. Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi- - nonexpansive mappings, Appl. Math. Lett., 22 (2009), 1051-1055
##[19]
L.-H. Qiu, S.-S. Yao , Strong convergence theorems of nonself nonexpansive mapping in Banach spaces, Appl. Math. Sci., 5 (2011), 2781-2788
##[20]
S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J., 4 (1994), 23-28
##[21]
N. Shioji, W. Takahashi , Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645
##[22]
S. Somalia, Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 79 (2002), 327-332
##[23]
T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005 (2005), 103-123
##[24]
W. Takahashi , Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000)
##[25]
Z. M. Wang, Y. F. Su, D. X. Wang, Y. C. Dong, A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math., 235 (2011), 2364-2371
##[26]
N. C. Wong, D. R. Sahu, J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal., 69 (2008), 4732-4753
##[27]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. , (2), 66 (2002), 240-256
##[28]
H.-K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., 298 (2004), 279-291
##[29]
H.-K. Xu, M. A. Alghamdi, N. Shahzad, The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces, Fixed Point Theory Appl., 2015 (2015), 1-12
##[30]
Y. H. Yao, N. Shahzad, Y.-C. Liou, Modified semi-implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 2015 (2015), 1-15
]