%0 Journal Article %T Frozen jacobian iterative method for solving systems of nonlinear equations application to nonlinear IVPs and BVPs %A Ullah, Malik Zaka %A Ahmad, Fayyaz %A Alshomrani, Ali Saleh %A Alzahrani, A. K. %A Alghamdi, Metib Said %A Ahmad, Shamshad %A Ahmad, Shahid %J Journal of Nonlinear Sciences and Applications %D 2016 %V 9 %N 12 %@ ISSN 2008-1901 %F Ullah2016 %X Frozen Jacobian iterative methods are of practical interest to solve the system of nonlinear equations. A frozen Jacobian multi-step iterative method is presented. We divide the multi-step iterative method into two parts namely base method and multi-step part. The convergence order of the constructed frozen Jacobian iterative method is three, and we design the base method in a way that we can maximize the convergence order in the multi-step part. In the multi-step part, we utilize a single evaluation of the function, solve four systems of lower and upper triangular systems and a second frozen Jacobian. The attained convergence order per multi-step is four. Hence, the general formula for the convergence order is \(3 + 4(m - 2)\) for \(m \geq 2\) and \(m\) is the number of multi-steps. In a single instance of the iterative method, we employ only single inversion of the Jacobian in the form of LU factors that makes the method computationally cheaper because the LU factors are used to solve four system of lower and upper triangular systems repeatedly. The claimed convergence order is verified by computing the computational order of convergence for a system of nonlinear equations. The efficiency and validity of the proposed iterative method are narrated by solving many nonlinear initial and boundary value problems. %9 journal article %R 10.22436/jnsa.009.12.09 %U http://dx.doi.org/10.22436/jnsa.009.12.09 %P 6021--6033 %0 Journal Article %T A parameterized multi-step Newton method for solving systems of nonlinear equations %A F. Ahmad %A E. Tohidi %A J. A. Carrasco %J Numer. Algorithms %D 2016 %V 71 %F Ahmad2016 %0 Journal Article %T Higher order multi-step Jarratt-like method for solving systems of nonlinear equations: application to PDEs and ODEs %A F. Ahmad %A E. Tohidi %A M. Z. Ullah %A J. A. Carrasco %J Comput. Math. Appl. %D 2015 %V 70 %F Ahmad2015 %0 Journal Article %T An efficient higher-order quasilinearization method for solving nonlinear BVPs %A E. S. Alaidarous %A M. Z. Ullah %A F. Ahmad %A A. S. Al-Fhaid %J J. Appl. Math. %D 2013 %V 2013 %F Alaidarous2013 %0 Journal Article %T An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system %A A. H. Bhrawy %J Appl. Math. Comput. %D 2014 %V 247 %F Bhrawy2014 %0 Journal Article %T Three-step iterative methods with eighth-order convergence for solving nonlinear equations %A W. H. Bi %A H. M. Ren %A Q. B. Wu %J J. Comput. Appl. Math. %D 2009 %V 225 %F Bi2009 %0 Journal Article %T A modified Newton-Jarratt's composition %A A. Cordero %A J. L. Hueso %A E. Martínez %A J. R. Torregrosa %J Numer. Algorithms %D 2010 %V 55 %F Cordero2010 %0 Journal Article %T On the global convergence of Halley's iteration formula %A M. Davies %A B. Dawson %J Numer. Math. %D 1975 %V 24 %F Davies1975 %0 Journal Article %T The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves %A M. Dehghan %A F. Fakhar-Izadi %J Math. Comput. Modelling %D 2011 %V 53 %F Dehghan2011 %0 Journal Article %T A multi-parameter family of three-step eighth-order iterative methods locating a simple root %A Y. H. Geum %A Y. I. Kim %J Appl. Math. Comput. %D 2010 %V 215 %F Geum2010 %0 Journal Article %T A new exact and easy method of finding the roots of equations generally and without any previous reduction %A E. Halley %A %J Philos. Trans. Roy. Soc. London %D 1964 %V 18 %F Halley1964 %0 Journal Article %T Optimal order of one-point and multipoint iteration %A H. T. Kung %A J. F. Traub %J J. Assoc. Comput. Mach. %D 1974 %V 21 %F Kung1974 %0 Journal Article %T On a new method for computing the numerical solution of systems of nonlinear equations %A H. Montazeri %A F. Soleymani %A S. Shateyi %A S. S. Motsa %J J. Appl. Math. %D 2012 %V 2012 %F Montazeri2012 %0 Journal Article %T On a new class of optimal eighth-order derivative-free methods %A F. Soleymani %J Acta Univ. Sapientiae Math. %D 2011 %V 3 %F Soleymani2011 %0 Journal Article %T A multi-step class of iterative methods for nonlinear systems %A F. Soleymani %A T. Lotfi %A P. Bakhtiari %J Optim. Lett. %D 2014 %V 8 %F Soleymani2014 %0 Journal Article %T An efficient Legendre pseudospectral method for solving nonlinear quasi bang-bang optimal control problems %A E. Tohidi %A S. Lotfi Noghabi %J J. Appl. Math. Stat. Inform. %D 2012 %V 8 %F Tohidi2012 %0 Journal Article %T Four-point optimal sixteenth-order iterative method for solving nonlinear equations %A M. Z. Ullah %A A. S. Al-Fhaid %A F. Ahmad %J J. Appl. Math. %D 2013 %V 2013 %F Ullah2013 %0 Journal Article %T An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs %A M. Z. Ullah %A S. Serra-Capizzano %A F. Ahmad %J Appl. Math. Comput. %D 2015 %V 250 %F Ullah2015 %0 Journal Article %T Numerical solution of nonlinear systems by a general class of iterative methods with application to nonlinear PDEs %A M. Z. Ullah %A F. Soleymani %A A. S. Al-Fhaid %J Numer. Algorithms %D 2014 %V 67 %F Ullah2014 %0 Journal Article %T Modified Ostrowski's method with eighth-order convergence and high efficiency index %A X. Wang %A L. P. Liu %J Appl. Math. Lett. %D 2010 %V 23 %F Wang2010