Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions
-
1374
Downloads
-
2897
Views
Authors
Ardjouma Ganon
- Institut National Polytechnique Felix Houphouet-Boigny Yamoussoukro, BP 2444, Cote d'Ivoire.
Manin Mathurin Taha
- Institut National Polytechnique Felix Houphouet-Boigny Yamoussoukro, BP 2444, Cote d'Ivoire.
N'guessan Koffi
- UFR SED, Universite Alassane Ouattara de Bouake, 01 BP V 18 Bouake 01, Cote d'Ivoire.
Augustin Kidjegbo Toure
- UFR SED, Universite Alassane Ouattara de Bouake, 01 BP V 18 Bouake 01, Cote d'Ivoire.
Abstract
This work is concerned with the study of the numerical approximation
for the nonlinear diffusion equation \( (u^{m})_t= u_{xx}, \ 0<x<1, \ t>0 \), under Neumann boundary conditions \( u_x(0,t)=0, \ u_x(1,t)=u^{\alpha}(1,t), \ t>0 \). First, we obtain a semidiscrete scheme by the finite differences method and prove the convergence of its solution to the continuous one. Then, we establish the numerical blow-up and the convergence of the numerical blow-up time to the theoretical one when the mesh size goes to zero. Finally, we illustrate our analysis with some numerical experiments.
Share and Cite
ISRP Style
Ardjouma Ganon, Manin Mathurin Taha, N'guessan Koffi, Augustin Kidjegbo Toure, Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions, Journal of Nonlinear Sciences and Applications, 14 (2021), no. 2, 80--88
AMA Style
Ganon Ardjouma, Taha Manin Mathurin, Koffi N'guessan, Toure Augustin Kidjegbo, Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions. J. Nonlinear Sci. Appl. (2021); 14(2):80--88
Chicago/Turabian Style
Ganon, Ardjouma, Taha, Manin Mathurin, Koffi, N'guessan, Toure, Augustin Kidjegbo. "Numerical blow-up for nonlinear diffusion equation with neumann boundary conditions." Journal of Nonlinear Sciences and Applications, 14, no. 2 (2021): 80--88
Keywords
- Nonlinear diffusion equation
- numerical blow-up
- arc length transformation
- Aitken \( \Delta^{2} \) method
MSC
References
-
[1]
K. A. Adou, K. A. Touré, A. Coulibaly, On the numerical quenching time at blow-up, Adv. Math. Sci. J., 8 (2019), 71--85
-
[2]
K. Deng, M. X. Xu, Remarks on blow-up behavior for a nonlinear diffusion equation with neumann boundary conditions, Proc. Amer. Math. Soc., 127 (1999), 167--172
-
[3]
K. B. Edja, K. N'guessan, B. J.-C. Koua, K. A. Touré, Numerical quenching for heat equations with coupled nonlinearboundary flux, Int. J. Anal. Appl., 17 (2019), 1034--1051
-
[4]
R. Ferreira, P. Groisman, J. D. Rossi, Numerical Blow-up for the Porous Medium Equation with a Source, Numer. Methods Partial Differential Equations, 20 (2004), 552--575
-
[5]
R. Ferreira, F. Quirós, The Balance bet we en Nonlinear Inwards and Outwards Boundary Flux for a Nonlinear Heat Equation, J. Differential Equations, 184 (2002), 259--282
-
[6]
J. Filo, Diffusivity versus Absorption through the Boundary, J. Differential Equations, 99 (1992), 281--305
-
[7]
A. Ganon, M. M. Taha, A. K. Touré, Blow-up for Semidiscretization of Semilinear Parabolic Equation With Nonlinear Boundary Condition, J. Math. Res., 11 (2019), 1--10
-
[8]
A. Ganon, M. M. Taha, A. K. Touré, Numerical blow-up on whole domain for a quasilinear parabolic equation with nonlinear boundary condition, Adv. Math. Sci. J., 9 (2020), 49--58
-
[9]
C. Hirota, K. Ozawa, Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations--An application to the blow-up problems of partial differential equations, J. Comput. Appl. Math., 193 (2006), 614--637
-
[10]
Z. X. Jiang, S. Zheng, X. F. Song, Blow-Up Analysis for a Nonlinear Diffusion Equation with Nonlinear Boundary Conditions, Appl. Math. Lett., 17 (2004), 193--199
-
[11]
K. C. N'dri, K. A. Touré, G. Yoro, Numerical blow-up time for a parabolic equation with nonlinear boundary conditions, Int. J. Numer. Methods Appl., 17 (2018), 141--160
-
[12]
T. K. Ushijima, On the Approximation of Blow-up Time for Solutions of Nonlinear Parabolic Equations, Publ. Res. Inst. Math. Sci., 36 (2000), 613--640