Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
Volume 13, Issue 5, pp 270--283
http://dx.doi.org/10.22436/jnsa.013.05.04
Publication Date: March 08, 2020
Submission Date: October 31, 2019
Revision Date: January 23, 2020
Accteptance Date: January 28, 2020
-
1782
Downloads
-
3669
Views
Authors
Bashir Ali
- Department of Mathematical Sciences, Bayero University, Kano, Nigeria.
G. C. Ugwunnadi
- Department of Mathematics , University of Eswatini, Private Bag 4, Kwaluseni, Eswatini.
M. S. Lawan
- Department of Mathematics and Statistics, Kaduna Polytechnic, Kaduna, Nigeria.
Abstract
In this paper, we study the split common fixed point problem in reflexive Banach spaces, we obtain a strong convergence theorem for approximating a solution of the split common fixed point problem for Bregman demigeneralized mapping. Our result extend and improve important recent results announced by many authors.
Share and Cite
ISRP Style
Bashir Ali, G. C. Ugwunnadi, M. S. Lawan, Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications, Journal of Nonlinear Sciences and Applications, 13 (2020), no. 5, 270--283
AMA Style
Ali Bashir, Ugwunnadi G. C., Lawan M. S., Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications. J. Nonlinear Sci. Appl. (2020); 13(5):270--283
Chicago/Turabian Style
Ali, Bashir, Ugwunnadi, G. C., Lawan, M. S.. "Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications." Journal of Nonlinear Sciences and Applications, 13, no. 5 (2020): 270--283
Keywords
- Bregman distance
- Bregman demigeneralized mappings
- split common fixed point problem
- fixed point
- Banach spaces
MSC
References
-
[1]
B. Ali, J. N. Ezeora, M. S. Lawan, Inertial algorithm for solving fixed point and generalized mixed equilibrium problems in Banach spaces, PanAmer. Math. J., 29 (2019), 64--83
-
[2]
E. Asplund, R. T. Rockafellar, Gradient of Convex Function, Trans. Amer. Math. Soc., 139 (1969), 443--467
-
[3]
H. H. Bauschke, J. M. Borwein, Legendre Function and the Method of Bregman Projections, J. Convex Anal., 4 (1997), 27--67
-
[4]
H. H. Bauschke, P. L. Combettes, J. M. Borwein, Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., 3 (2001), 615--647
-
[5]
J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer-Verlag, New York (2000)
-
[6]
L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., 7 (1967), 200--217
-
[7]
D. Butnariu, A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht (2000)
-
[8]
D. Butnariu, E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 39 pages
-
[9]
C. L. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759--775
-
[10]
Y. Censor, A. Lent, An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., 34 (1981), 321--353
-
[11]
Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587--600
-
[12]
J.-B. Hiriart-Urruty, C. Lemaréchal, Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin (1993)
-
[13]
M. Hojo, W. Takahashi, A strong convergence theorem by shrinking projection method for the split null point problem Banach spaces, Numer. Funct. Anal. Optim., 37 (2016), 541--553
-
[14]
F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., 6 (2005), 505--523
-
[15]
M. S. Lawan, B. Ali, M. H. Harbau, G. C. Ugwunnadi, Approximation of common fixed points for finite families of Bregman quasi-total asymptotically nonexpansive mappings, J. Nigerian Math. Soc., 35 (2016), 282--302
-
[16]
V. Martin-Marquez, S. Reich, S. Sabach, Right bregman nonexpansive operators in Banach space, Nonlinear Anal., 75 (2012), 5448--5465
-
[17]
E. Naraghirad, J. C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 43 pages
-
[18]
S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471--485
-
[19]
S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 22--44
-
[20]
S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73 (2010), 122--135
-
[21]
S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, 2011 (2011), 301--316
-
[22]
W. Takahashi, The split common fixed point problem and the hybrid method for demigeneralized mappings in two Banach spaces and application, J. Nonlinear Convex Anal., 18 (2017), 29--45
-
[23]
W. Takahashi, The split common null point problem for generalized resolvents in two Banach spaces, Numer. Algorithms, 75 (2017), 1065--1078
-
[24]
W. Takahashi, H.-K. Xu, J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205--2011
-
[25]
Y. Tomizawa, A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., 2014 (2014), 14 pages
-
[26]
G. C. Ugwunnadi, B. Ali, I. Idris, M. S. Minjibir, Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., 231 (2014), 1--16
-
[27]
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge (2002)