]>
2019
12
9
ISSN 2008-1898
58
Stability analysis of the generalized fractional differential equations with and without exogenous inputs
Stability analysis of the generalized fractional differential equations with and without exogenous inputs
en
en
The stability conditions of the fractional differential equations described by the Caputo generalized fractional derivative have been addressed. The generalized asymptotic stability of a class of the fractional differential equations has been investigated. The fractional input stability in the context of the fractional differential equations described by the Caputo generalized fractional derivative has been introduced. The Lyapunov characterizations of the generalized asymptotic stability and the generalized fractional input stability of the fractional differential equations with or without inputs have been provided. Several examples illustrating the main results of the paper have been proposed. The Caputo generalized fractional derivative and the generalized Gronwall lemma have been used.
562
572
Ndolane
Sene
Laboratoire Lmdan, Departement de Mathematiques de la Decision
Universite Cheikh Anta Diop de Dakar
Senegal
ndolanesene@yahoo.fr
Caputo generalized fractional derivative
asymptotic stability
fractional differential equations
Article.1.pdf
[
[1]
Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457-5473
##[2]
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv, 2016 (2016), 1-8
##[3]
A. Atangana, I. Koca, New direction in fractional differentiation, Math. Nat. Sci., 1 (2017), 18-25
##[4]
D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, The dual action of fractional multi time hamilton equations, Int. J. Theor. Phys., 48 (2009), 2558-2569
##[5]
D. Baleanu, G.-C. Wu, S.-D. Zeng, Chaos analysis and asymptotic stability of generalized caputo fractional differential equations, Chaos Solitons Fractals, 102 (2017), 99-105
##[6]
A. Ben Makhlouf, Stability with respect to part of the variables of nonlinear Caputo fractional differential equations, Math. Commun., 23 (2018), 119-126
##[7]
N. A. Camacho, M. A. D. Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonli. Sci. Numer. Simulat., 19 (2014), 2951-2957
##[8]
F. Jarad, T. Abdeljawad, A modified laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 2 (2018), 88-98
##[9]
F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619
##[10]
F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 1 (2017), 1-16
##[11]
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865
##[12]
U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15
##[13]
Y. Li, Y. Q. Chen, I. Podlubny, Mittag--leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969
##[14]
S. Priyadharsini, Stability of fractional neutral and integrodifferential systems, J. Fract. Calc. Appl., 7 (2016), 87-102
##[15]
N. Sene, Exponential form for lyapunov function and stability analysis of the fractional differential equations, J. Math. Computer Sci., 18 (2018), 388-397
##[16]
N. Sene, Lyapunov characterization of the fractional nonlinear systems with exogenous input, Fractal Fract., 2 (2018), 1-10
##[17]
N. Sene, Analytical solutions of Hristov diffusion equations with non-singular fractional derivatives, Chaos, 29 (2019), 1-11
##[18]
N. Sene, Fractional input stability and its application to neural network, Discrete Contin. Dyn. Syst. Ser. S, 13 (2019), 853-865
##[19]
N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., 4 (2019), 147-165
##[20]
N. Sene, On stability analysis of the fractional nonlinear systems with hurwitz state matrix, J. Fract. Calc. Appl., 10 (2019), 1-9
##[21]
N. Sene, Solution of fractional diffusion equations and Cattaneo-Hristov diffusion model, Int. J. Anal. Appl., 17 (2019), 191-207
##[22]
E. D. Sontag, Y. Wang, On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), 351-359
##[23]
A. Souahi, A. Ben Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N. S.), 28 (2017), 1265-1274
##[24]
H. P. Ye, J. M. Gao, Y. S. Ding, A generalized gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081
##[25]
F. R. Zhang, G. R. Chen, C. P. Li, J. Kurths, Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 1-26
]