The odd inverse ParetoG class: properties and applications
Authors
Maha A. Aldahlan
 Statistics Department, Faculty of Science, King Abdulaziz University, Jaddeh, KSA.
 Statistics Department, Faculty of Science, University of Jeddah, Jaddeh, KSA.
Ahmed Z. Afify
 Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
AHadi N. Ahmed
 Department of mathematical statistics, ISSR, Cairo University, Egypt.
Abstract
We introduce a new family of continuous distributions called the \textit{odd
inverse ParetoG} class which extends the exponentiatedG family due to
Gupta et al. [R. C. Gupta, P. L. Gupta, R. D. Gupta, Comm. Statist. Theory Methods, \(\textbf{27}\)
(1998), 887904] and the MarshallOlkinG class due to Marshall and Olkin
[A. W. Marshall, I. Olkin, Biometrika, \(\textbf{84}\) (1997), 641652]. We define and study two special models of the proposed family which
are capable of modeling various shapes of aging and failure criteria. The
special models of this family can provide reversed Jshape, symmetric, left
skewed, right skewed, unimodal or bimodal shapes for the density function.
Some of its mathematical properties are derived. The maximum likelihood
method is used to estimate the model parameters. By means of four real data
sets we show that the special models of this family have superior
performance over several existing distributions.
Keywords
 Generating function
 inverse Pareto distribution
 maximum likelihood
 order statistic
 Rényi entropy
MSC
References

[1]
I. B. AbdulMoniem, H. F. AbdelHameed, On exponentiated Lomax distribution, Int. J. Math. Arch., 3 (2012), 2144– 2150.

[2]
A. Z. Afify, E. Altun, M. Alizadeh, G. Ozel, G. G. Hamedani , The odd exponentiated halflogisticG family: properties, characterizations and applications, Chil. J. Stat., 8 (2017), 65–91.

[3]
A. Z. Afify, G. M. Cordeiro, S. Nadarajah, H. M. Yousof, G. Ozel, Z. M. Nofal, E. Altun, The complementary geometric transmutedG family of distributions: model, properties and application, Hacet. J. Math. Statist., 47 (2018), 1348–1374.

[4]
M. Alizadeh, H. M. Yousof, A. Z. Afify, G. M. Cordeiro, M. Mansoor, The Complementary Generalized Transmuted PoissonG Family of Distributions, Austrian J. Statist., 47 (2018), 51–71.

[5]
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of distributions, Metron, 71 (2013), 63–79.

[6]
A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi, A new weighted Lindley distribution with application, Braz. J. Probab. Stat., 30 (2016), 1–27.

[7]
A. Asgharzadeh, S. Nadarajah, F. Sharafi, Weibull Lindley distribution, REVSTAT, 16 (2018), 87–113.

[8]
M. Bourguignon, R. B. Silva, G. M. Cordeiro, The WeibullG family of probability distributions, J. Data Sci., 12 (2014), 53–68.

[9]
G. M. Cordeiro, A. Z. Afify, E. M. M. Ortega, A. K. Suzuki, M. E. Mead, The odd Lomax generator of distributions: Properties, estimation and applications, J. Comput. Appl. Math., 347 (2019), 222–237.

[10]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, S. Cakmakyapan, G. Ozel, The Lindley Weibull Distribution: Properties and Applications, Anais da Academia Brasileira de Ciencias, 90 (2018), 2579–2598.

[11]
G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The exponentiated WeibullH family of distributions: Theory and Applications, Mediterr. J. Math., 14 (2017), 22 pages.

[12]
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883–898.

[13]
G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, R. R. Pescim, The Lomax generator of distributions: properties, minification process and regression model, Appl. Math. Comput., 247 (2014), 465–486.

[14]
N. Eugene, C. Lee, F. Famoye, Betanormal distribution and its applications, Comm. Statist. Theory Methods, 31 (2002), 497–512.

[15]
M. E. Ghitany, F. A. AlAwadhi, L. A. Alkhalfan, Marshall–Olkin extended Lomax distribution and its application to censored data, Comm. Statist. Theory Methods, 36 (2007), 1855–1866.

[16]
M. E. Ghitany, D. K. AlMutairi, F. A. AlAwadhi, M. M. AlBurais, MarshallOlkin extended Lindley distribution and its application, Int. J. Appl. Math., 25 (2012), 709–721.

[17]
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Comm. Statist. Theory Methods, 27 (1998), 887–904.

[18]
S. A. Kemaloglu, M. Yilmaz, Transmuted twoparameter Lindley distribution, Comm. Statist. Theory Methods, 46 (2017), 11866–11879.

[19]
S. A. Klugman, H. H. Panjer, G. E. Willmot , Loss models: from data to decisions, John Wiley & Sons, Hoboken (2012)

[20]
D. Kundu, M. Z. Raqab, Generalized Rayleigh distribution: different methods of estimations, Comput. Statist. Data Anal., 49 (2005), 187–200.

[21]
E. T. Lee, J. W. Wang, Statistical methods for survival data analysis: Third edition, John Wiley & Sons, Hoboken (2003)

[22]
A. J. Lemonte, G. M. Cordeiro, An extended Lomax distribution, Statistics, 47 (2013), 800–816.

[23]
D. V. Lindley, Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, 20 (1958), 102–107.

[24]
A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652.

[25]
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failurereal data, IEEE Trans. Reliab., 42 (1993), 299–302.

[26]
S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331–359.

[27]
F. Proschan, Theoretical explanation of observed decreasing failure rate, Technometrics, 5 (1963), 375–383.

[28]
J. W. S. Rayleigh , On the resultant of a large number of vibration of the same pitch and arbitrary phase, Philosophical Magazine: Series 5, 43 (1880), 259–272.

[29]
R. Shanker, A. Mishra, A quasi Lindley distribution, African J. Math. Comput. Sci. Res., 6 (2013), 64–71.

[30]
M. H. Tahir, G. M. Cordeiro, M. Mansoor, M. Zubair, The WeibullLomax distribution: properties and applications, Hacet. J. Math. Stat., 44 (2015), 455–474.

[31]
H. Torabi, N. H. Montazari , The gammauniform distribution and its application , Kybernetika (Prague), 48 (2012), 16–30.

[32]
W. Weibull , A statistical distribution function of wide applicability, J. Appl. Mech., 18 (1951), 290–293.

[33]
K. Zografos, N. Balakrishnan, On families of beta and generalized gamma generated distributions and associated inference, Stat. Methodol., 6 (2009), 344–362.