Lag synchronization of uncertain complex dynamical networks with derivative coupling
Volume 12, Issue 4, pp 252--261
http://dx.doi.org/10.22436/jnsa.012.04.06
Publication Date: December 07, 2018
Submission Date: July 22, 2018
Revision Date: October 05, 2018
Accteptance Date: November 15, 2018
-
2028
Downloads
-
3451
Views
Authors
Ghada Al-mahbashi
- School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia.
M. S. M. Noorani
- School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia.
Abstract
In this study, uncertain complex dynamical network model with time varying coupling delay and derivative coupling delay is considered. The lag synchronization between two such uncertain networks with different nodes is investigated.
An adaptive control method is designed by using Lyapunov stability theory for achieving the lag synchronization and some corollaries are also given.
In addition, on the basis of the adaptive update law, unknown parameters of the networks are estimated.
The analytical results show that the states of the dynamical network with derivative delay coupling can be asymptotically synchronized under the designed control. The numerical simulation results also demonstrate the validity of the designed method.
Share and Cite
ISRP Style
Ghada Al-mahbashi, M. S. M. Noorani, Lag synchronization of uncertain complex dynamical networks with derivative coupling, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 4, 252--261
AMA Style
Al-mahbashi Ghada, Noorani M. S. M., Lag synchronization of uncertain complex dynamical networks with derivative coupling. J. Nonlinear Sci. Appl. (2019); 12(4):252--261
Chicago/Turabian Style
Al-mahbashi, Ghada, Noorani, M. S. M.. "Lag synchronization of uncertain complex dynamical networks with derivative coupling." Journal of Nonlinear Sciences and Applications, 12, no. 4 (2019): 252--261
Keywords
- Lag synchronization
- derivative coupling
- complex dynamical networks
- adaptive control
MSC
References
-
[1]
A. Abdurahman, H. J. Jiang, Z. D. Teng, Exponential lag synchronization for memristor-based neural networks with mixed time delays via hybrid switching control, J. Franklin Inst., 353 (2016), 2859–2880.
-
[2]
G. Al-Mahbashi, M. S. M. Noorani, S. Abu Bakar, S. Vahedi, Adaptive projective lag synchronization of uncertain complex dynamical networks with disturbance, Neurocomputing, 207 (2016), 645–652.
-
[3]
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang , Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175–308.
-
[4]
R. Cheng, M. Peng, Adaptive synchronization for complex networks with probabilistic time-varying delays, J. Franklin Inst., 353 (2016), 5099–5120.
-
[5]
L. Deng, Z. Wu, Q. Wu, Pinning synchronization of complex network with non-derivative and derivative coupling, Nonlinear Dynam., 73 (2013), 775–782.
-
[6]
H. Du, Function projective synchronization in complex dynamical networks with or without external disturbances via error feedback control, Neurocomputing, 173 (2016), 1443–1449.
-
[7]
I. Fischer, R. Vicente, J. M. Buldú, M. Peil, C. R. Mirasso, M. C. Torrent, J. Garca-Ojalvo, Zero-lag long-range synchronization via dynamical relaying, Phys. Rev. Lett., 97 (2006), 4 pages.
-
[8]
D. H. Ji, S. C. Jeong, J. H. Park, S. M. Lee, S. C. Won, Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling, Appl. Math. Comput., 218 (2012), 4872–4880.
-
[9]
X. Jian, Y. H. Yang, J. S. Long, Synchronisation of complex networks with derivative coupling via adaptive control, Internat. J. Systems Sci., 44 (2013), 2183–2189.
-
[10]
Y. Kuang, Delay differential equations: with applications in population dynamics, Academic Press, Boston (1993)
-
[11]
B. C. Li, Pinning adaptive hybrid synchronization of two general complex dynamical networks with mixed coupling, Appl. Math. Model., 40 (2016), 2983–2998.
-
[12]
Z. Li, J. A. Fang, T. Huang, Q. Miao, H. Wang, Impulsive synchronization of discrete-time networked oscillators with partial input saturation, Infor. Sci., 422 (2018), 531–541.
-
[13]
C. D. Li, X. F. Liao, K.-W. Wong, Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication, Phys. D, 194 (2004), 187–202.
-
[14]
N. Li, H. Sun, Z. Li, Q. Zhang, Adaptive semi-periodically intermittent and lag synchronization control of neural networks with mixed delays, IEEE ACCESS, 6 (2018), 4742–4749.
-
[15]
H. M. Liu, W. G. Sun, G. Al-mahbashi, Parameter identification based on lag synchronization via hybrid feedback control in uncertain drive-response dynamical networks, Adv. Difference Equ., 2017 (2017), 11 pages.
-
[16]
Y. Liu, Z.Wang, J. Liang, X. Liu , Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE Trans. Syst. Man Cyber. Part B (Cybernetics), 38 (2008), 1314–1325.
-
[17]
Z. C. Liu,W. S.Wong, H. Cheng, Cluster synchronization of coupled systems with nonidentical linear dynamics, Internat. J. Robust Nonlinear Control, 27 (2017), 1462–1479.
-
[18]
S. A. Pandit, R. E. Amritkar, Characterization and control of small-world networks , Phys. Rev. E, 60 (1999), 1119–1122.
-
[19]
L. Shi, H. Zhu, S. Zhong, K. Shi, J. Cheng, Cluster synchronization of linearly coupled complex networks via linear and adaptive feedback pinning controls, Nonlinear Dynam., 88 (2017), 859–870.
-
[20]
S. H. Strogatz , Exploring complex networks, Nature, 410 (2001), 268–276.
-
[21]
Z. Tang, J. H. Park, J. Feng, Impulsive effects on quasi-synchronization of neural networks with parameter mismatches and time-varying delay, IEEE Trans. Neural Networks Learning Syst., 29 (2018), 908–919.
-
[22]
Z. Tang, J. H. Park, T. H. Lee, J. W. Feng, Random adaptive control for cluster synchronization of complex networks with distinct communities, Internat. J. Adapt. Control Signal Process., 30 (2016), 534–549.
-
[23]
J.-A. Wang, X. H. Ma, X. Y. Wen, Q. L. Sun, Pinning lag synchronization of drive-response complex networks via intermittent control with two different switched periods, Phys. A, 461 (2016), 278–287.
-
[24]
X.Wang, K. She, S. Zhong, H. Yang, Lag synchronization analysis of general complex networks with multiple time-varying delays via pinning control strategy, Neural Comput. Appl., 2017 (2017), 1–11.
-
[25]
Y. Wu, L. Liu, Exponential outer synchronization between two uncertain time-varying complex networks with nonlinear coupling, Entropy, 17 (2015), 3097–3109.
-
[26]
Y. H. Xu, W. N. Zhou, J. A. Fang, W. Sun, Adaptive synchronization of the complex dynamical network with nonderivative and derivative coupling, Phys. Lett. A, 374 (2010), 1673–1677.
-
[27]
Y. H. Xu, W. N. Zhou, J. A. Fang, W. Sun, L. Pan, Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling , J. Franklin Inst., 347 (2010), 1566–1576.
-
[28]
Y. H. Xu, W. N. Zhou, J. A. Fang, C. R. Xie, D. B. Tong, Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling, Neurocomputing, 173 (2016), 1356–1361.
-
[29]
X. S. Yang, Y. M. Feng, K. F. Cedric, Q. Song, F. E. Alsaadi , Synchronization of coupled neural networks with infinitetime distributed delays via quantized intermittent pinning control, Nonlinear Dynam., 94 (2018), 2289-2303.
-
[30]
S. Zheng, Pinning and impulsive synchronization control of complex dynamical networks with non-derivative and derivative coupling, J. Franklin Inst., 354 (2017), 6341–6363.
-
[31]
P. P. Zhou, S. M. Cai, Adaptive exponential lag synchronization for neural networks with mixed delays via intermittent control, Adv. Difference Equ., 2018 (2018), 17 pages.