Alpha power transformed extended exponential distribution: properties and applications
Volume 12, Issue 4, pp 239--251
http://dx.doi.org/10.22436/jnsa.012.04.05
Publication Date: December 05, 2018
Submission Date: September 17, 2018
Revision Date: October 10, 2018
Accteptance Date: October 15, 2018
-
2272
Downloads
-
4642
Views
Authors
Amal S. Hassan
- Institute of Statistical Studies and Research, Cairo University, Egypt.
Rokaya E. Mohamd
- Institute of Statistical Studies and Research, Cairo University, Egypt.
M. Elgarhy
- Vice Presidency for Graduate Studies and Scientific Research, University of Jeddah, Jaddeh, KSA.
Aisha Fayomi
- Statistics Department, Faculty of Science, King AbdulAziz University, Jaddeh, KSA.
Abstract
In this paper, a three-parameter lifetime model motivated by alpha power transformation is considered. We call the proposed distribution as; the \textit{alpha power transformed extended exponential} (APTEE). The APTEE model contains new recent models as; alpha power transformed exponential and alpha power transformed Lindley distributions. At the same time, it contains classical models as exponential, gamma, and Lindley distributions. The properties of the APTEE distribution are derived. Parameter estimation is accomplished using maximum likelihood, percentiles, and Cramer-von Mises methods. Simulation issues and applications to real data are emphasized.
Share and Cite
ISRP Style
Amal S. Hassan, Rokaya E. Mohamd, M. Elgarhy, Aisha Fayomi, Alpha power transformed extended exponential distribution: properties and applications, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 4, 239--251
AMA Style
Hassan Amal S., Mohamd Rokaya E., Elgarhy M., Fayomi Aisha, Alpha power transformed extended exponential distribution: properties and applications. J. Nonlinear Sci. Appl. (2019); 12(4):239--251
Chicago/Turabian Style
Hassan, Amal S., Mohamd, Rokaya E., Elgarhy, M., Fayomi, Aisha. "Alpha power transformed extended exponential distribution: properties and applications." Journal of Nonlinear Sciences and Applications, 12, no. 4 (2019): 239--251
Keywords
- Extended exponential
- moments
- maximum likelihood
- percentiles and Cramer-von Mises
MSC
References
-
[1]
M. V. Aarset, How to identify a bathtub hazard rate, IEEE Trans. Reliab., 36 (1987), 106–108.
-
[2]
G. M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883–898.
-
[3]
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the Lambert W function, Adv. Comput. Math., 5 (1996), 329–359.
-
[4]
R. B. D’Agostino, M. A. Stephens, Goodness-of-Fit Techniques, Marcel Dekker, New York (1986)
-
[5]
T. A. N. de Andrade, M. Bourguignon, G. M. Cordeiro, The exponentiated generalized extended exponential distribution, J. Data Sci., 14 (2016), 393–413.
-
[6]
S. Dey, I. Ghosh, D. Kumar, Alpha power transformed Lindley distribution: Properties and associated inference with application to earthquake data, Ann. Data Sci., 2018 (2018), 1–28.
-
[7]
Y. M. Gómez, H. Bolfarine, H. W. Gómez, A new extension of the exponential distribution, Rev. Colombiana Estadist., 37 (2014), 25–34.
-
[8]
R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to gamma and Weibull distributions, Biom. J., 43 (2001), 117–130.
-
[9]
R. D. Gupta, D. Kundu, Generalized exponential distributions, Aust. N. Z. J. Stat., 41 (1999), 173–188.
-
[10]
P. Jodra, Computer generation of random variables with Lindley or Poisson-Lindley distribution via the LambertW function , Math. Comput. Simulation, 81 (2010), 851–859.
-
[11]
D. V. Lindley , Fiducial distributions and Bayes’ theorem, J. Roy. Statist. Soc. Ser. B, 20 (1958), 102–107.
-
[12]
H. Linhart, W. Zucchini , Model Selection, John Wiley & Sons, New York (1986)
-
[13]
A. Luceño , Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators, Comput. Statist. Data Anal., 51 (2006), 904–917.
-
[14]
P. D. M. MacDonald , Comment on ”An estimation procedure for mixtures of distributions” by Choi and Bulgren, J. Roy. Statist. Soc. Ser. B, 33 (1971), 326–329.
-
[15]
A. Mahadavi, D. Kundu , A new method of generating distribution with an application to exponential distribution, Comm. Statist. Theory Methods, 46 (2017), 6543–6557.
-
[16]
F. Merovci, Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes, 1 (2013), 112–122.
-
[17]
S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558.
-
[18]
M. Nassar, A. Alzaatreh, M. Mead, O. Abo-Kasem, Alpha power Weibull distribution: Properties and applications, Comm. Statist. Theory Methods, 46 (2017), 10236–10252.
-
[19]
M. Rasekhi, M. Alizadeh, E. Altun, G. G. Hamedani, A. Z. Afify, M. Ahmad, The modified exponential distribution with applications, Pakistan J. Statist., 33 (2017), 383–398.
-
[20]
A. Rényi, On measures of entropy and information, In: Proc. 4th Berkeley Sympos. Math. Statist. and Prob. (University of California Press, Berkeley), 1961 (1961), 547–561.
-
[21]
M. M. Ristic, N. Balakrishnan, The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82 (2012), 1191–1206.
-
[22]
M. Shaked, J. G. Shanthikumar, Stochastic Orders, John Wiley & Sons, New York (2007)