The transmuted transmuted-G family: properties and applications
Volume 12, Issue 4, pp 217--229
http://dx.doi.org/10.22436/jnsa.012.04.03
Publication Date: December 05, 2018
Submission Date: June 26, 2018
Revision Date: October 05, 2018
Accteptance Date: November 17, 2018
-
2144
Downloads
-
4205
Views
Authors
M. M. Mansour
- Department of MIS, Yanbu, Taibah University, Saudi Arabia.
- Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
Enayat M. Abd Elrazik
- Department of MIS, Yanbu, Taibah University, Saudi Arabia.
- Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
Ahmed Z. Afify
- Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
Mohammad Ahsanullah
- Department of Management Sciences, Rider University NJ, USA.
Emrah Altun
- Department of Statistics, Bartin University, Bartin 74100, Turkey.
Abstract
This paper introduces a new family of continuous distributions called the
transmuted transmuted-G family which extends the quadratic rank
transmutation map pioneered by Shaw and Buckley [W. T. Shaw, I. R. Buckley, arXiv preprint, \(\textbf{2007}\) (2007), 28 pages]. We provide two
special models of the new family which can be used effectively to model
survival data since they accommodate increasing, decreasing, unimodal,
bathtub-shaped and increasing-decreasing-increasing hazard functions. We
also provide two new characterization theorems of the proposed family. The
estimation of the model parameters is performed by the maximum likelihood
method. The flexibility of the proposed family is illustrated by means of
two applications to real data.
Share and Cite
ISRP Style
M. M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify, Mohammad Ahsanullah, Emrah Altun, The transmuted transmuted-G family: properties and applications, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 4, 217--229
AMA Style
Mansour M. M., Abd Elrazik Enayat M., Afify Ahmed Z., Ahsanullah Mohammad, Altun Emrah, The transmuted transmuted-G family: properties and applications. J. Nonlinear Sci. Appl. (2019); 12(4):217--229
Chicago/Turabian Style
Mansour, M. M., Abd Elrazik, Enayat M., Afify, Ahmed Z., Ahsanullah, Mohammad, Altun, Emrah. "The transmuted transmuted-G family: properties and applications." Journal of Nonlinear Sciences and Applications, 12, no. 4 (2019): 217--229
Keywords
- Characterization
- maximum likelihood
- moments
- transmuted family
MSC
References
-
[1]
A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Alzaatreh, Z. M. Nofal, The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., 14 (2016), 245–270.
-
[2]
A. Z. Afify, G. G. Hamedani, I. Ghosh, M. E. Mead, The transmuted Marshall-Olkin Fréchet distribution: properties and applications, International Journal of Statistics and Probability, 4 (2015), 132–184.
-
[3]
A. Z. Afify, Z. M. Nofal, N. S. Butt , Transmuted complementary Weibull geometric distribution , Pak. J. Stat. Oper. Res., 10 (2014), 435–454.
-
[4]
A. Z. Afify, H. M. Yousof, N. S. Butt, G. G. Hamedani, The transmuted Weibull-Pareto distribution, Pakistan J. Statist., 32 (2016), 183–206.
-
[5]
A. Z. Afify, H. M. Yousof, S. Nadarajah, The beta transmuted-H family for lifetime data, Stat. Interface, 10 (2017), 505–520.
-
[6]
E. k. Al-Hussaini, M. Ahsanullah, Exponentiated Distributions, Atlantis Press, Paris (2015)
-
[7]
M. Alizadeh, H. M. Yousof, A. Z. Afify, G. M. Cordeiro, M. Mansoor, The complementary generalized transmuted Poisson-G family of distributions, Austrian J. Statist., 47 (2018), 51–71.
-
[8]
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions , Metron, 71 (2013), 63–79.
-
[9]
G. R. Aryal, C. P. Tsokos, On the transmuted extreme value distribution with application, Nonlinear Anal., 71 (2009), 1401–1407.
-
[10]
G. R. Aryal, C. P. Tsokos, Transmuted Weibull distribution: a generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math., 4 (2011), 89–102.
-
[11]
G. M. Cordeiro, E. M. Hashimoto, E. M. M. Ortega, The McDonald Weibull model, Statistics, 48 (2014), 256–278.
-
[12]
I. Elbatal, G. Aryal, On the transmuted additive Weibull distribution, Austrian J. Statist., 42 (2013), 117–132.
-
[13]
M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power Lindley distribution and associated inference, Comput. Statist. Data Anal., 64 (2013), 20–33.
-
[14]
M. N. Khan, The modified beta Weibul distribution, Hacettepe J. Math. Statist., 44 (2015), 1553–1568.
-
[15]
C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, J. Modern Appl. Statist. Methods, 6 (2007), 173–186.
-
[16]
E. T. Lee, J. W. Wang , Statistical Methods for Survival Data Analysis, John Wiley & Sons, Hoboken (2003)
-
[17]
M. M. Mansour, S. M. Mohamed, A new generalized of transmuted Lindley distribution, Appl. Math. Sci., 9 (2015), 2729–2748.
-
[18]
F. Merovci, Transmuted lindley distribution, Int. J. Open Problems Comput. Sci. Math., 6 (2013), 63–72.
-
[19]
F. Merovci, M. Alizadeh, M. G. G. Hamedani, Another generalized transmuted family of distributions: properties and applications, Austrian J. Statist., 45 (2016), 71–93.
-
[20]
F. Merovci, M. Alizadeh, H. M. Yousof, G. G. Hamedani, The exponentiated transmuted-G family of distributions: theory and applications, Comm. Statist. Theory Methods, 46 (2017), 10800–10822.
-
[21]
F. Merovci, I. Elbatal, Transmuted Lindley-geometric distribution and its applications, J. Statist. Appl. Prob., 3 (2014), 77–91.
-
[22]
D. N. Prabhakar Murthy, M. Xie, R. Jiang, Weibull Models, John Wiley & Sons, Hoboken (2004)
-
[23]
M. W. A. Ramos, P. R. D. Marinho, R. V. da Silva, G. M. Cordeiro, The exponentiated Lomax Poisson distribution with an application to lifetime data, Adv. Appl. Stat., 34 (2013), 107–135.
-
[24]
W. T. Shaw, I. R. Buckley, The alchemy of probability distributions: beyond gram-charlier expansions and a skew-kurtoticnormal distribution from a rank transmutation map, arXiv preprint, 2007 (2007), 28 pages.
-
[25]
M. H. Tahir, G. M. Cordeiro, Compounding of distributions: a survey and new generalized classes, J. Statist. Distribut. Appl., 3 (2016), 1–35.
-
[26]
H. M. Yousof, A. Z. Afify, M. Alizadeh, N. S. Butt, G. G. Hamedani, M. M. Ali, The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., 11 (2015), 441–464.