Approximation of general Pexider functional inequalities in fuzzy Banach spaces
Volume 12, Issue 4, pp 206--216
http://dx.doi.org/10.22436/jnsa.012.04.02
Publication Date: December 05, 2018
Submission Date: April 02, 2018
Revision Date: August 05, 2018
Accteptance Date: October 26, 2018
-
2069
Downloads
-
4299
Views
Authors
Gang Lu
- Department of Mathematics, School of Science, ShenYang University of Technology, Shenyang 110870, P. R. China.
Jincheng Xin
- Department of Mathematics, School of Science, ShenYang University of Technology, Shenyang 110870, P. R. China.
Yuanfeng Jin
- Department of Mathematics, Yanbian University, Yanji 133001, People's Republic of China.
Choonkil Park
- Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
Abstract
In this paper, we investigate a fuzzy version of a generalized Hyers-Ulam-Rassias type stability for the following
Pexider functional
inequalities
\[
f(x+y)+f(x-y)+g(z)+h(l) \leq
kp\left(\frac{2x+z+l}{k}\right) ,
\]
\[
f(x+y)+f(x-y) + g(z)+k h(l) \leq
kp\left(\frac{ x+ z }{k}+l\right) ,
\]
where $k$ are nonzero real scalars.
In the fuzzy normed linear space setting is presented. In this condition, we give an alternative proof of this result in fuzzy Banach space.
Share and Cite
ISRP Style
Gang Lu, Jincheng Xin, Yuanfeng Jin, Choonkil Park, Approximation of general Pexider functional inequalities in fuzzy Banach spaces, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 4, 206--216
AMA Style
Lu Gang, Xin Jincheng, Jin Yuanfeng, Park Choonkil, Approximation of general Pexider functional inequalities in fuzzy Banach spaces. J. Nonlinear Sci. Appl. (2019); 12(4):206--216
Chicago/Turabian Style
Lu, Gang, Xin, Jincheng, Jin, Yuanfeng, Park, Choonkil. "Approximation of general Pexider functional inequalities in fuzzy Banach spaces." Journal of Nonlinear Sciences and Applications, 12, no. 4 (2019): 206--216
Keywords
- Fuzzy approximation
- Pexider functional inequality
- fuzzy Banach space
MSC
References
-
[1]
H. Azadi-Kenary, J. R. Lee, C. Park, Non-Archimedean stability of an AQQ-functional equation, J. Comput. Anal. Appl., 14 (2012), 211–227.
-
[2]
T. Bag S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687–705.
-
[3]
V. Balopoulos, A. G. Hatzimichailidis, B. K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci., 177 (2007), 2336–2348.
-
[4]
I.-S. Chang , Stability of higher ring derivations in fuzzy Banach algebras, J. Computat. Anal. Appl., 14 (2012), 1059– 1066.
-
[5]
S. C. Cheng, J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429–436.
-
[6]
I. G. Cho, D. S. Kang, H. J. Koh, Stability problems of cubic mappings with the fixed point alternative, J. Computat. Anal. Appl., 14 (2012), 132–142.
-
[7]
Y. J. Cho, C. Park, R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., 23 (2010), 1238–1242.
-
[8]
M. Eshaghi Gordji, M. Bavand Savadkouhi, M. Bidkham, Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl., 12 (2010), 454–462.
-
[9]
M. Eshaghi Gordji, A. Bodaghi , On the stability of quadratic double centralizers on Banach algebras, J. Computat. Anal. Appl., 13 (2011), 724–729.
-
[10]
M. Eshaghi Gordji, R. Farokhzad Rostami, S. A. R. Hosseinioun , Nearly higher derivations in unital C*-algebras, J. Computat. Anal. Appl., 13 (2011), 734–742.
-
[11]
M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, E. Rashidi, M. Aghaei, Ternary Jordan derivations on C*-ternary algebras, J. Computat. Anal. Appl., 12 (2010), 463–470.
-
[12]
M. Fang, G. Lu, D. H. Pei , Functional inequalities in generalized quasi-Banach spaces, J. Nonlinear Sci. Appl., 9 (2016), 2481–2491.
-
[13]
C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), 239–248.
-
[14]
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431–434.
-
[15]
P. Găvruţa , A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431–436.
-
[16]
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27 (1941), 222–224.
-
[17]
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor (2001)
-
[18]
A. K. Katsaras, Fuzzy topological vector spaces II , Fuzzy Sets and Systems, 12 (1984), 143–154.
-
[19]
S. V. Krishna, K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), 207–217.
-
[20]
G. Lu, Y. Jiang, C. Park, Functional inequality in Fréchet spaces, J. Comput. Anal. Appl., 15 (2013), 369–373.
-
[21]
G. Lu, C. Park, Additive functional inequalities in Banach spaces , J. Inequal. Appl., 2012 (2012), 10 pages.
-
[22]
G. Lu, C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett., 24 (2011), 1312–1316.
-
[23]
P. Malliavin, Stochastic Analysis, Springer-Verlag, Berlin (1997)
-
[24]
C.-G. Park , Homomorphisms between Poisson JC*-algebra, Bull. Braz. Math. Soc. (N.S.), 36 (2005), 79–97.
-
[25]
C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math., 132 (2008), 87–96.
-
[26]
C. Park, Y. J. Cho, H. Azadi-Kenary, Orthogonal stability of a generalized quadratic functional equation in non- Archimedean spaces, J. Computat. Anal. Appl., 14 (2012), 526–535.
-
[27]
C. Park, Y. S. Cho, M.-H. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl., 2007 (2007), 13 pages.
-
[28]
C. Park, S. Y. Jang, R. Saadati, Fuzzy approximate of homomorphisms, J. Comput. Anal. Appl., 14 (2012), 833–841.
-
[29]
T. M. Rassias, On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., 72 (1978), 297–300.
-
[30]
J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., (2)108 (1984), 445–446.
-
[31]
S. Shagholi, M. Eshaghi Gordji, M. Bavand Savadkouhi, Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl., 13 (2011), 1106–1114.
-
[32]
S. Shagholi, M. Eshaghi Gordji, M. Bavand Savadkouhi , Stability of ternary quadratic derivations on ternary Banach algebras , J. Comput. Anal. Appl., 13 (2011), 1097–1105.
-
[33]
S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York (1960)
-
[34]
J.-Z. Xiao, X.-H. Zhu, Fuzzy normed spaces of operators and its completeness , Fuzzy Sets and Systems, 133 (2003), 389–399.