Some new inequalities of the Ostrowski-Grüss, Čebyšev, and Trapezoid types on time scales
Volume 12, Issue 4, pp 192--205
http://dx.doi.org/10.22436/jnsa.012.04.01
Publication Date: December 05, 2018
Submission Date: October 24, 2018
Revision Date: November 12, 2018
Accteptance Date: November 15, 2018
-
1991
Downloads
-
4306
Views
Authors
Eze R. Nwaeze
- Department of Mathematics, Tuskegee University, Tuskegee, AL 36088, USA.
Nurhan Kaplan
- Art and Science Faculty, Mathematics Department, Niğde Ömer Halisdemir University, Niğde, Turkey.
Fatma Gozde Tuna
- Art and Science Faculty, Mathematics Department, Niğde Ömer Halisdemir University, Niğde, Turkey.
Adnan Tuna
- Art and Science Faculty, Mathematics Department, Niğde Ömer Halisdemir University, Niğde, Turkey.
Abstract
In this paper, we establish some novel Ostrowski-Grüss, Čebyšev, and
Trapezoid type inequalities involving functions whose second derivatives are
bounded on time scales. We also give some other interesting inequalities as
special cases of our results.
Share and Cite
ISRP Style
Eze R. Nwaeze, Nurhan Kaplan, Fatma Gozde Tuna, Adnan Tuna, Some new inequalities of the Ostrowski-Grüss, Čebyšev, and Trapezoid types on time scales, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 4, 192--205
AMA Style
Nwaeze Eze R., Kaplan Nurhan, Tuna Fatma Gozde, Tuna Adnan, Some new inequalities of the Ostrowski-Grüss, Čebyšev, and Trapezoid types on time scales. J. Nonlinear Sci. Appl. (2019); 12(4):192--205
Chicago/Turabian Style
Nwaeze, Eze R., Kaplan, Nurhan, Tuna, Fatma Gozde, Tuna, Adnan. "Some new inequalities of the Ostrowski-Grüss, Čebyšev, and Trapezoid types on time scales." Journal of Nonlinear Sciences and Applications, 12, no. 4 (2019): 192--205
Keywords
- Ostrowski's inequality
- Čebyšev inequality
- Ostrowski-Grüss
- Trapezoid inequality
- time scales
MSC
References
-
[1]
R. Agarwal, M. Bohner, A. Peterson , Inequalities on time scales: a survey, Math. Inequal. Appl., 4 (2001), 535–557.
-
[2]
E. Akin-Bohner, M. Bohner, T. Matthews, Time scales Ostrowski and Grüss type inequalities involving three functions, Nonlinear Dyn. Syst. Theory, 12 (2012), 119–135.
-
[3]
M. Bohner, T. Matthews, Ostrowski inequalities on time scales , JIPAM. J. Inequal. Pure Appl. Math., 9 (2008), 8 pages.
-
[4]
M. Bohner, E. R. Nwaeze, A. Tuna, Trapezoid-Type Inequalities on Time Scales, , (Submitted),
-
[5]
M. Bohner, A. Peterson, Advances in dynamic equations on time scales , Birkhäuser Boston, Boston (2003)
-
[6]
M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Boston (2001)
-
[7]
P. L. Čebyšev , Sue les expressions approxmatives des intégrales définies par les autres prises entre les mêmes limites , Proc. Math. Soc. Charkov, 2 (1882), 93–98.
-
[8]
A. A. El-Deeb, H. A. Elsennary, E. R. Nwaeze, Generalized Weighted Ostrowski, Trapezoid and Grüss Type Inequalities on Time Scales, Fasc. Math., 60 (2018), 123–144.
-
[9]
S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, Würzburg, Germany (1988)
-
[10]
V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan , Dynamic systems on measure chains, Kluwer Academic Publishers Group, Dordrecht (1996)
-
[11]
W. J. Liu, Q.-A. Ngô, W. B. Chen, A new generalization of Ostrowski type inequality on time scales, An. St. Univ. Ovidius Constanta, 17 (2009), 101–114.
-
[12]
W. J. Liu, A. Tuna, Diamond weighted Ostrowski type and Grüss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251–260.
-
[13]
W. J. Liu, A. Tuna, Weighted Ostrowski, Trapezoid and Grüss type inequalities on time scales, J. Math. Inequal., 6 (2012), 381–399.
-
[14]
W. J. Liu, A. Tuna, Y. Jiang, New weighted Ostrowski and Ostrowski-Grüss type inequalities on time scales , An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 60 (2014), 57–76.
-
[15]
W. J. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., 93 (2014), 551–571.
-
[16]
E. R. Nwaeze , Generalized weighted trapezoid and Grüss type inequalities on time scales, Aust. J. Math. Anal. Appl., 14 (2017), 13 pages.
-
[17]
A. Ostrowski , Uber die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227.
-
[18]
B. G. Pachpatte , On trapezoid and Grüss-like integral inequalities , Tamkang J. Math., 34 (2003), 365–369.
-
[19]
A. Tuna, Y. Jiang, W. J. Liu , Weighted Ostrowski, Ostrowski-Grüss and Ostrowski-Čebyšev Type Inequalities on Time Scales , Publ. Math. Debrecen, 81 (2012), 81–102.
-
[20]
A. Tuna, W. Liu, New weighted Čebyšev-Ostrowski type integral inequalities on time scales, J. Math. Inequal., 10 (2016), 327–356.
-
[21]
G. P. Xu, Z. B. Fang, A New Ostrowski type inequality on time scales, J. Math. Inequal., 10 (2016), 751–760.