Implicit hybrid methods for solving fractional Riccati equation
-
2157
Downloads
-
4443
Views
Authors
Muhammed I. Syam
- Department of Mathematical Sciences, United Arab Emirates University, UAE.
Azza Alsuwaidi
- Department of Mathematical Sciences, United Arab Emirates University, UAE.
Asia Alneyadi
- Department of Mathematical Sciences, United Arab Emirates University, UAE.
Safa Al Refai
- Department of Mathematical Sciences, United Arab Emirates University, UAE.
Sondos Al Khaldi
- Department of Mathematical Sciences, United Arab Emirates University, UAE.
Abstract
In this paper, we modify the implicit hybrid methods for solving fractional Riccati equation. Similar methods are implemented for the ordinary derivative and we are the first who implement it for fractional derivative case. This approach is of higher order comparing with the existing methods in the literature. We study the convergence, zero stability, consistency, and region of absolute stability. Numerical results are presented to show the efficiency of the proposed method.
Share and Cite
ISRP Style
Muhammed I. Syam, Azza Alsuwaidi, Asia Alneyadi, Safa Al Refai, Sondos Al Khaldi, Implicit hybrid methods for solving fractional Riccati equation, Journal of Nonlinear Sciences and Applications, 12 (2019), no. 2, 124--134
AMA Style
Syam Muhammed I., Alsuwaidi Azza, Alneyadi Asia, Al Refai Safa, Al Khaldi Sondos, Implicit hybrid methods for solving fractional Riccati equation. J. Nonlinear Sci. Appl. (2019); 12(2):124--134
Chicago/Turabian Style
Syam, Muhammed I., Alsuwaidi, Azza, Alneyadi, Asia, Al Refai, Safa, Al Khaldi, Sondos. "Implicit hybrid methods for solving fractional Riccati equation." Journal of Nonlinear Sciences and Applications, 12, no. 2 (2019): 124--134
Keywords
- Fractional Riccati equation
- implicit hybrid methods
- convergence
MSC
References
-
[1]
Q. M. Al-Mdallal, M. I. Syam, M. N. Anwar , A collocation-shooting method for solving fractional boundary value problems , Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3814–3822.
-
[2]
H. Aminikhah, A. H. R. Sheikhani, H. Rezazadeha, Approximate analytical solutions of distributed order fractional Riccati differential equation, Ain Shams Eng. J., 2016 (2016), 8 pages.
-
[3]
S. Balaji , Legendre wavelet operational matrix method for solution of fractional order Riccati differential equation, J. Egyptian Math. Soc., 23 (2015), 263–270.
-
[4]
C. Bota, B. Caruntu , Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method, Chaos Solitons Fractals, 102 (2017), 339–345.
-
[5]
M. F. El-Sayed, M. I. Syam, Electrohydrodynamic instability of a dielectric compressible liquid sheet streaming into an ambient stationary compressible gas, Arc. Appl. Mech., 77 (2007), 613–626.
-
[6]
M. F. El-Sayed, M. I. Syam, Numerical study for the electrified instability of viscoelastic cylindrical dielectric fluid film surrounded by a conducting gas, Phy. A: Stat. Mech. Appl., 377 (2007), 381–400.
-
[7]
F. Ghomanjani, A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations, J. Egyptian Math. Soc., 24 (2016), 638–643.
-
[8]
M. Hamarsheh, A. I. Ismail, Z. Odibat, An Analytic Solution for Fractional Order Riccati Equations by Using Optimal Homotopy Asymptotic Method, , 10 (2016), 1131–1150.
-
[9]
H. Jafari, H. Tajadodi , He’s Variational Iteration Method for Solving Fractional Riccati Differential Equation , Int. J. Differ. Equ., 2010 (2010), 8 pages.
-
[10]
M. M. Khader , Numerical treatment for solving fractional Riccati differential equation, J. Egyptian Math. Soc., 21 (2013), 32–37.
-
[11]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70.
-
[12]
N. A. Khan, A. Ara, N. A. Khan , Fractional-order Riccati differential equation: Analytical approximation and numerical results, Adv. Difference Equ., 2013 (2013), 16 pages.
-
[13]
N. A. Khana, A. Ara, M. Jamil, An efficient approach for solving the Riccati equation with fractional orders, Comput. Math. Appl., 61 (2011), 2683–2689.
-
[14]
J. D. Lambert, Numerical Methods for Ordinary Differential Systems , John Wiley & Sons, Chichester (1991)
-
[15]
Y. L. Li , Solving a nonlinear fractional differential equation using Chebyshev wavelets, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2284–2292.
-
[16]
X. Y. Li, B. Y. Wu, R. T. Wang, Reproducing kernel method for fractional Riccati differential equations, Abstr. Appl. Anal., 2014 (2014), 6 pages.
-
[17]
Bin Lu, Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376 (2012), 2045–2048.
-
[18]
S. Momani, N. Shawagfeh , Decomposition method for solving fractional Riccati differential equations , Appl. Math. Comput., 182 (2006), 1083–1092.
-
[19]
Z. Odibat, S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, 36 (2008), 167–174.
-
[20]
M. Z. Raja, M. Manzar, R. Samarc, An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP, Appl. Math. Model., 39 (2015), 3075–3093.
-
[21]
M. G. Sakar , A. Akgül, D. Baleanu , On solutions of fractional Riccati differential equations, Adv. Difference Equ., 2017 (2017), 10 pages.
-
[22]
M. I. Syam, Cubic spline interpolation predictors over implicitly defined curves, J. Comput. Appl. Math., 157 (2003), 283–295.
-
[23]
M. I. Syam, The modified Broyden-variational method for solving nonlinear elliptic differential equations, Chaos Solitions Fractals, 32 (2007), 392–404.
-
[24]
M. I. Syam, B. S. Attili , Numerical solution of singularly perturbed fifth order two point boundary value problem, Appl. Math. Comput., 170 (2005), 1085–1094.
-
[25]
M. I. Syam, H. I. Siyyam, An efficient technique for finding the eigenvalues of fourth-order Sturm-Liouville problems, Chaos Solitons Fractals, 39 (2009), 659–665.
-
[26]
M. I. Syam, H. I. Siyyam, Numerical differentiation of implicitly defined curves, J. Comput. Appl. Math., 108 (1999), 131–144.