Schur convexity properties for a class of symmetric functions with applications
    
        
        
            
            
                
                    
                        - 
                            3057
                            Downloads
                        
 
                        - 
                            6056
                            Views
                        
 
                    
                 
                
             
         
     
    
    
    Authors
    
                Wei-Mao  Qian
                
        
                                        - School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, China.
                                        Yu-Ming  Chu
                
        
                                        - Department of Mathematics, Huzhou University, Huzhou 313000, China.
                                    
        
    Abstract
    In the article, we prove that the symmetric function
\[
F_{n}\left(x_{1}, x_{2}, \cdots, x_{n}; r\right)=\sum_{1\leq i_{1}<i_{2}<\cdots<i_{r}\leq n}\prod_{j=1}^{r}\left(\frac{1+x_{i_{j}}}{1-x_{i_{j}}}\right)^{1/r}
\]
is Schur convex, Schur multiplicatively convex and Schur harmonic convex on \([0, 1)^{n}\), and establish several new analytic
inequalities by use of the theory of majorization, where \(r\in \{1, 2, \cdots, n\}\) and \(i_{1}, i_{2}, \cdots i_{n}\) are integers.
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                    Wei-Mao  Qian, Yu-Ming  Chu, Schur convexity properties for a class of symmetric functions with applications, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 6, 841--849
         
        
            AMA Style
                                                                                    Qian Wei-Mao, Chu Yu-Ming, Schur convexity properties for a class of symmetric functions with applications. J. Nonlinear Sci. Appl. (2018); 11(6):841--849
         
        
        
            Chicago/Turabian Style
                                                                                    Qian, Wei-Mao, Chu, Yu-Ming. "Schur convexity properties for a class of symmetric functions with applications." Journal of Nonlinear Sciences and Applications, 11, no. 6 (2018): 841--849
         
     
            
    Keywords
    
                -  Schur convex
 
                -  Schur multiplicatively convex
 
                -  Schur harmonic convex
 
                -  symmetric function
 
            
    
        
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                M. Adil Khan, S. Begum, Y. Khurshid, Y.-M. Chu, Ostrowski type inequalities involving conformable fractional integrals,  J. Inequal. Appl., 2018 (2018),  14 pages.
                            
            
        
 
        
                - 
            [2]
            
                                M. Adil Khan, Y.-M. Chu, A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for \(MT_(r;g,m,\varphi)\)- preinvex functions,  J. Comput. Anal. Appl., 26 (2019),  1487–1503.
                            
            
        
 
        
                - 
            [3]
            
                                M. Adil Khan, Y.-M. Chu, T. U. Khan, J. Khan,  Some new inequalities of Hermite-Hadamard type for s-convex functions with applications,  Open Math., 15 (2017), 1414–1430.
                            
            
        
 
        
                - 
            [4]
            
                                J. S. Aujla, F. C. Silva , Weak majorization inequalities and convex functions,  Linear Algebra Appl., 369 (2003), 217–233.
                            
            
        
 
        
                - 
            [5]
            
                                Y.-M. Chu, G.-D. Wang, X.-M. Zhang , The Schur multiplicative and harmonic convexities of the complete symmetric function,  Math. Nachr., 284 (2011),  653–663.
                            
            
        
 
        
                - 
            [6]
            
                                Y.-M. Chu, W.-F. Xia, X.-H. Zhang,  The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications,  J. Multivariate Anal., 105 (2012), 412–421.
                            
            
        
 
        
                - 
            [7]
            
                                Y.-M. Chu, X.-M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schurconcave, J. Math. Kyoto Univ., 48 (2008), 229–238.
                            
            
        
 
        
                - 
            [8]
            
                                Y.-M. Chu, X.-M. Zhang, G. Wang , The schur geometrical convexity of the extended mean values,  J. convex Anal., 15 (2008),  707–718.
                            
            
        
 
        
                - 
            [9]
            
                                K. Guan , Schur-convexity of the complete symmetric function,  Math. Inequal. Appl., 9 (2006),  567–576.
                            
            
        
 
        
                - 
            [10]
            
                                K. Guan , A class of symmetric functions for multiplicatively convex function,  Math. Inequal. Appl., 10 (2007), 745–753.
                            
            
        
 
        
                - 
            [11]
            
                                K. Guan , Some properties of a class of symmetric functions, J. Math. Anal. Appl., 336 (2007), 70–80.
                            
            
        
 
        
                - 
            [12]
            
                                G. H. Hardy, J. E. Littledwood, G. Pólya,  Some simple inequalities satisfied by convex function, Messenger Math., 58 (1929),  145–152. 
                            
            
        
 
        
                - 
            [13]
            
                                W.-D. Jiang,  Some properties of dual form of the Hamy’s symmetric function, J. Math. Inequal., 1 (2007),  117–125.
                            
            
        
 
        
                - 
            [14]
            
                                A.W. Marshall, I. Olkin,  Inequalities: Theory of Majorization and Its Applications,  Academic Press, New York-London (1979)
                            
            
        
 
        
                - 
            [15]
            
                                M. Merkle , Convexity, Schur-convexity and bounds for the gamma function involving the digamma function , Rocky Mountain J. Math., 28 (1998),  1053–1066.
                            
            
        
 
        
                - 
            [16]
            
                                F. Qi , A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., 35 (2005),  1787–1793.
                            
            
        
 
        
                - 
            [17]
            
                                F. Qi, J. Sándor, S. S. Dragomir, A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math., 9 (2005), 411–420.
                            
            
        
 
        
                - 
            [18]
            
                                I. Schur,  Über eine Klasse vonMittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzunsber. Berlin.Math. Ges., 22 (1923),  9–20. 
                            
            
        
 
        
                - 
            [19]
            
                                H.-N. Shi, Y.-M. Jiang, W.-D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means , Comput. Math. Appl., 57 (2009),  266–274.
                            
            
        
 
        
                - 
            [20]
            
                                H.-N. Shi, S.-H. Wu, F. Qi,  An alternative note on the Schur-convexity of the extended mean values,  Math. Inequal. Appl., 9 (2006),  219–224.
                            
            
        
 
        
                - 
            [21]
            
                                M.-K. Wang, Y.-M. Chu , Refinements of transformation inequalities for zero-balanced hypergeometric functions,  Acta Math. Sci. Ser. B Engl. Ed., 37 (2017), 607–622.
                            
            
        
 
        
                - 
            [22]
            
                                M.-K. Wang, Y.-M. Chu,  Landen inequalities for a class of hypergeometric functions with applications , Math. Inequal. Appl., 21 (2018), 521–537.
                            
            
        
 
        
                - 
            [23]
            
                                M.-K. Wang, S.-L. Qiu, Y.-M. Chu, Infinite series formula for Hübner upper bound function with applications to Herch- Pfluger distortion function, Math. Inequal. Appl., 21 (2018),  629–648.
                            
            
        
 
        
                - 
            [24]
            
                                S.Wu,  Generalization and sharpness of the power means inquality and their applications,  J. Math. Anal. Appl., 312 (2005),  637–652.
                            
            
        
 
        
                - 
            [25]
            
                                Z.-H. Yang, Y.-M. Chu , A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729–735.
                            
            
        
 
        
                - 
            [26]
            
                                Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W. Zhang,  On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind,  J. Math. Anal. Appl., 462 (2018),  1714–1726.
                            
            
        
 
        
                - 
            [27]
            
                                Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W. Zhang , On approximating the error function, Math. Inequal. Appl., 21 (2018), 469–479.
                            
            
        
 
        
                - 
            [28]
            
                                Z.-H. Yang, W. Zhang, Y.-M. Chu,  Sharp Gautschi inequality for parameter \(0 < p < 1\) with applications, Math. Inequal. Appl., 20 (2017),  1107–1120.
                            
            
        
 
        
                - 
            [29]
            
                                X.-M. Zhang, Schur-convex functions and isoperimetric inequalities,  Proc. Amer. Math. Soc., 126 (1998), 461–470.