Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces
Volume 11, Issue 5, pp 683--700
http://dx.doi.org/10.22436/jnsa.011.05.09
Publication Date: April 01, 2018
Submission Date: October 16, 2017
Revision Date: December 20, 2017
Accteptance Date: March 02, 2018
-
2243
Downloads
-
4690
Views
Authors
Montira Suwannaprapa
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
Narin Petrot
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
- Centre of Excellence in Nonlinear Analysis and Optimizations, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
Abstract
In this paper, we consider the split monotone variational inclusion problem in Hilbert spaces. By assuming the existence of solutions, we introduce an iterative algorithm, in which the stepsizes does not need any prior information about the operator norm, and show its convergence theorem. Some applications and numerical experiments of the considered problem are also discussed.
Share and Cite
ISRP Style
Montira Suwannaprapa, Narin Petrot, Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 5, 683--700
AMA Style
Suwannaprapa Montira, Petrot Narin, Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces. J. Nonlinear Sci. Appl. (2018); 11(5):683--700
Chicago/Turabian Style
Suwannaprapa, Montira, Petrot, Narin. "Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert spaces." Journal of Nonlinear Sciences and Applications, 11, no. 5 (2018): 683--700
Keywords
- Split monotone variational inclusion problem
- maximal monotone operator
- inverse strongly monotone operator
- convergence theorems
MSC
References
-
[1]
J.-B. Baillon, R. E. Bruck, S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math., 4 (1978), 1–9.
-
[2]
J.-B. Baillon, G. Haddad , Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math., 26 (1977), 137–150.
-
[3]
H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York (2011)
-
[4]
O. A. Boikanyo , The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators, Abstr. Appl. Anal., 2016 (2016 ), 10 pages.
-
[5]
R. E. Bruck, S. Reich , Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3 (1977), 459–470.
-
[6]
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem , Inverse Problems, 18 (2002), 441–453.
-
[7]
C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Analysis, 13 (2012), 759–775.
-
[8]
A. Cegielski , Iterative methods for fixed point problems in Hilbert Spaces, Lecture Notes in Mathematics, Springer, Heidelberg (2012)
-
[9]
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov , A unified approach for inversion problems in intensity-modulated radiation therapy , Phys. Med. Biol., 51 (2006), 2353–2365.
-
[10]
Y. Censor, T. Elfving , A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, 8 (1994), 221–239.
-
[11]
Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem , Numer. Algorithms, 59 (2012), 301–323.
-
[12]
S. S. Change, L. Wang, Y. Zhao, On a class of split equality fixed point problems in Hilbert spaces, J. Nonlinear Var. Anal., 1 (2017), 201–212.
-
[13]
S. Y. Cho, B. A. Bin Dehaish, X. Qin, Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., 7 (2017), 427–438.
-
[14]
S. Y. Cho, X. Qin, L. Wang , Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014 (2014 ), 15 pages.
-
[15]
P. Cholamjiak, W. Cholamjiak, S. Suantai, A modified regularization method for finding zeros of monotone operators in Hilbert spaces , J. Inequal. Appl., 2015 (2015 ), 10 pages.
-
[16]
H. Cui, F. Wang , Iterative methods for the split common fixed point problem in Hilbert spaces, Fixed Point Theory Appl., 2014 (2014 ), 8 pages.
-
[17]
J. Eckstein, D. P. Bertsckas , On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators , Math. Programming, 55 (1992), 293–318.
-
[18]
M. Eslamian, S. Saejung, J. Vahidi , Common solutions of a system of variational inequality problems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 55–62.
-
[19]
H. He, C. Ling, H.-K. Xu, A relaxed projection method for split variational inequalities, J. Optim. Theory Appl., 166 (2015), 213–233.
-
[20]
L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114–125.
-
[21]
G. López, V. Martín-Márquez, F. Wang, H.-K. Xu , Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problems, 28 (2012), 18 pages.
-
[22]
G. Marino, H.-K. Xu , Convergence of generalized proximal point algorithm, Commun. Pure Appl. Anal., 3 (2004), 791–808.
-
[23]
G. Marino, H.-K. Xu, , A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43–52.
-
[24]
B. Martinet , Régularisation d’inéquations variationnelles par approximations successives, Rev. Franaise Informat. Recherche Opérationnelle, 4 (1970), 154–158.
-
[25]
A. Moudafi , Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55.
-
[26]
A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., 74 (2011), 4083–4087.
-
[27]
A. Moudafi , Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283.
-
[28]
A. Moudafi, M. Théra , Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., 94 (1997), 425–448.
-
[29]
X. Qin, S. Y. Cho, L. Wang , A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., 2014 (2014 ), 10 pages.
-
[30]
X. Qin, J.-C. Yao , Projection splitting algorithms for nonself operators, J. Nonlinear Convex Anal., 18 (2017), 925–935.
-
[31]
T. Shimizu, W. Takahashi , Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211 (1997), 71–83.
-
[32]
M. Suwannaprapa, N. Petrot, S. Suantai , Weak convergence theorems for split feasibility problems on zeros of the sum of monotone operators and fixed point sets in Hilbert spaces, Fixed Point Theory Appl., 2017 (2017 ), 17 pages.
-
[33]
W. Takahashi , Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama (2009)
-
[34]
W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417–428.
-
[35]
W. Takahashi, H.-K. Xu, J.-C. Yao , Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221.
-
[36]
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446.
-
[37]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256.
-
[38]
H.-K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), 360–378.
-
[39]
Y. Yao, M. A. Noor, On convergence criteria of generalized proximal point algorithms, J. Comput. Appl. Math., 217 (2008), 46–55.
-
[40]
J. Zhao, S. He, Strong convergence of the viscosity approximation process for the split common fixed-point problem of quasi-nonexpansive mappings, J. Appl. Math., 2012 (2012 ), 12 pages.