Fixed point theorems for contractions of rational type in complete metric spaces
Volume 11, Issue 1, pp 98--107
http://dx.doi.org/10.22436/jnsa.011.01.08
Publication Date: December 27, 2017
Submission Date: August 17, 2017
Revision Date: November 06, 2017
Accteptance Date: November 08, 2017
-
2952
Downloads
-
6782
Views
Authors
Tomonari Suzuki
- Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan.
Abstract
Samet et al. in
[S. Samet, C. Vetro, H. Yazidi, J. Nonlinear Sci. Appl., \({\bf 6}\) (2013), 162--169]
proved some fixed point theorem for
contractions of rational type.
In order to clarify the mathematical structure of
contractions of rational type,
we generalize this theorem in a general setting.
Share and Cite
ISRP Style
Tomonari Suzuki, Fixed point theorems for contractions of rational type in complete metric spaces, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 1, 98--107
AMA Style
Suzuki Tomonari, Fixed point theorems for contractions of rational type in complete metric spaces. J. Nonlinear Sci. Appl. (2018); 11(1):98--107
Chicago/Turabian Style
Suzuki, Tomonari. "Fixed point theorems for contractions of rational type in complete metric spaces." Journal of Nonlinear Sciences and Applications, 11, no. 1 (2018): 98--107
Keywords
- Fixed point
- contraction of rational type
- complete metric space
MSC
References
-
[1]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
-
[2]
R. Caccioppoli, Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Lincei, 11 (1930), 794–799.
-
[3]
L. Ćirić, A new fixed-point theorem for contractive mappings, Publ. Inst. Math. (Beograd), 30 (1981), 25–27.
-
[4]
B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., 6 (1975), 1455–1458.
-
[5]
A. N. Gupta, A. Saxena, A unique fixed point theorem in metric spaces, Math. Student, 52 (1984), 156–158.
-
[6]
M. Hegedüs, T. Szilágyi, Equivalent conditions and a new fixed point theorem in the theory of contractive type mappings, Math. Japon., 25 (1980), 147–157.
-
[7]
J. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293–303.
-
[8]
J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear Anal., 71 (2009), 1073–1081.
-
[9]
E. Karapinar, W. Shatanawi, K. Taş, Fixed point theorem on partial metric spaces involving rational expressions, Miskolc Math. Notes, 14 (2013), 135–142.
-
[10]
M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge University Press, Cambridge (1990)
-
[11]
J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, Časopis Pěst. Mat., 105 (1980), 341–344.
-
[12]
A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329.
-
[13]
N. Redjel, A. Dehici, ˙I. M. Erhan, A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression, Fixed Point Theory Appl., 2015 (2015 ), 9 pages.
-
[14]
S. Samet, C. Vetro, H. Yazidi, A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear Sci. Appl., 6 (2013), 162–169.
-
[15]
T. Suzuki, Discussion of several contractions by Jachymski’s approach, Fixed Point Theory Appl., 2016 (2016), 11 pages.