# Solvability of second-order $m$-point difference equation boundary value problems on infinite intervals

Volume 10, Issue 11, pp 5734--5743 Publication Date: November 15, 2017       Article History
• 553 Views

### Authors

Changlong Yu - College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P. R. China. Jufang Wang - College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P. R. China. Yanping Guo - College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P. R. China. Surong Miao - College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P. R. China.

### Abstract

In this paper, we study second-order $m$-point difference boundary value problems on infinite intervals $\left\{\begin{array}{l} \Delta^{2}x(k-1)+f(k,x(k),\Delta x(k-1))=0,~k\in N,\\ x(0)=\sum\limits_{i=1}^{m-2}\alpha_{i}x(\eta_{i}),~\lim\limits_{k \rightarrow\infty }\Delta x(k)=0, \end{array} \right.$ where $N=\{1,2,\cdots\},\ f:N\times R^{2}\rightarrow R$ is continuous, $\alpha_{i}\in R,~\sum\limits_{i=1}^{m-2}\alpha_{i}\neq1,~\eta_{i}\in N,~0<\eta_{1}<\eta_{2}<\cdots<\infty$ and $\Delta x(k)=x(k+1)-x(k),$ the nonlinear term is dependent in a difference of lower order on infinite intervals. By using Leray-Schauder continuation theorem, the existence of solutions are investigated. Finally, we give one example to demonstrate the use of the main result.

### Keywords

• Difference equation
• boundary value problem
• Leray-Schauder continuation theorem
• infinite interval

•  34B15
•  34B16
•  34B18
•  34G20

### References

• [1] R. P. Agarwal, M. Bohner, D. O’Regan, Time scale boundary value problems on infinite intervals, Dynamic equations on time scales, J. Comput. Appl. Math., 141 (2002), 27–34.

• [2] R. P. Agarwal, D. O’Regan, Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl., 33 (1997), 85–99.

• [3] R. P. Agarwal, D. O’Regan , Discrete systems on infinite intervals, Comput. Math. Appl., 35 (1998), 97–105.

• [4] R. P. Agarwal, D. O’Regan , Existence and approximation of solutions of non-linear discrete systems on infinite intervals, Math. Methods Appl. Sci., 22 (1999), 91–99.

• [5] R. P. Agarwal, D. O’Regan , Continuous and discrete boundary value problems on the infinite interval: existence theory, Mathematika, 48 (2001), 273–292.

• [6] R. P. Agarwal, D. O’Regan, Infinite interval problems for differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht (2001)

• [7] R. P. Agarwal, D. O’Regan , Nonlinear Urysohn discrete equations on the infinite interval: a fixed-point approach, Advances in difference equations, III, Comput. Math. Appl., 42 (2001), 273–281.

• [8] R. P. Agarwal, D. O’Regan, Non-linear boundary value problems on the semi-infinite interval: an upper and lower solution approach, Mathematika, 49 (2002), 129–140.

• [9] B. Ahmad, A. Alsaedi, B. S. Alghamdi , Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real World Appl., 9 (2008), 1727–1740.

• [10] J. V. Baxley, Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. Math. Anal. Appl., 147 (1990), 122–133.

• [11] Y.-P. Guo, C.-L. Yu, J.-F. Wang, Existence of three positive solutions for m-point boundary value problems on infinite intervals, Nonlinear Anal., 71 (2009), 717–722.

• [12] G. S. Guseinov , A boundary value problem for second order nonlinear difference equations on the semi-infinite interval, Special issue in honour of Professor Allan Peterson on the occasion of his 60th birthday, Part I, J. Difference Equ. Appl., 8 (2002), 1019–1032.

• [13] R. E. Kidder, Unsteady flow of gas through a semi-infinite porous medium, J. Appl. Mech., 27 (1957), 329–332.

• [14] H.-R. Lian, W.-G. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett., 19 (2006), 1000–1006.

• [15] H.-R. Lian, J.-W. Li, R. P. Agarwal , Unbounded solutions of second order discrete BVPs on infinite intervals, J. Nonlinear Sci. Appl., 9 (2016), 357–369.

• [16] D. O’Regan, Theory of singular boundary value problems, World Scientific Publishing Co., Inc., River Edge, NJ (1994)

• [17] Y. Tian, W.-G. Ge, Multiple positive solutions of boundary value problems for second-order discrete equations on the half-line, J. Difference Equ. Appl., 12 (2006), 191–208.

• [18] Y. Tian, C. C. Tisdell, W.-G. Ge , The method of upper and lower solutions for discrete BVP on infinite intervals, J. Difference Equ. Appl., 17 (2011), 267–278.

• [19] C.-L. Yu, J.-F. Wang, G.-G. Li , Existence of positive solutions for nth-order integral boundary value problems with p- Laplacian operator on infinite interval, J. Hebei Univ. Sci. Technol., 36 (2015), 382–389.

• [20] L. Zheng, X. Zhang, J. He, Singular nonlinear boundary value problem for transmission process, Science Press, Beijing (2003)