Uniform convexity in \(\ell_{p(\cdot)}\)
-
2758
Downloads
-
6073
Views
Authors
Mostafa Bachar
- Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
Messaoud Bounkhel
- Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
Mohamed A. Khamsi
- Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
Abstract
In this work, we investigate the variable exponent sequence space \(\ell_{p(\cdot)}\). In particular, we prove a geometric property similar to uniform convexity without the assumption \(\limsup_{n \to \infty} p(n) < \infty\). This property allows us to prove the analogue to Kirk's fixed point theorem in the modular vector space \(\ell_{p(\cdot)}\) under Nakano's formulation.
Share and Cite
ISRP Style
Mostafa Bachar, Messaoud Bounkhel, Mohamed A. Khamsi, Uniform convexity in \(\ell_{p(\cdot)}\), Journal of Nonlinear Sciences and Applications, 10 (2017), no. 10, 5292--5299
AMA Style
Bachar Mostafa, Bounkhel Messaoud, Khamsi Mohamed A., Uniform convexity in \(\ell_{p(\cdot)}\). J. Nonlinear Sci. Appl. (2017); 10(10):5292--5299
Chicago/Turabian Style
Bachar, Mostafa, Bounkhel, Messaoud, Khamsi, Mohamed A.. "Uniform convexity in \(\ell_{p(\cdot)}\)." Journal of Nonlinear Sciences and Applications, 10, no. 10 (2017): 5292--5299
Keywords
- Fixed point
- modular vector spaces
- nonexpansive mapping
- uniformly convex
- variable exponent spaces
MSC
References
-
[1]
B. Beauzamy , Introduction to Banach Spaces and Their Geometry, North-Holland, Amsterdam (1985)
-
[2]
J. A. Clarkson , Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.
-
[3]
L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin (2011)
-
[4]
M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Wiley-Interscience, New York (2011)
-
[5]
M. A. Khamsi, W. M. Kozlowski , Fixed Point Theory in Modular Function Spaces, Birkhauser, New York (2015)
-
[6]
M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935–953.
-
[7]
W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006.
-
[8]
V. Klee, Summability in \(\ell(p_{11}, p_{21}, ...)\) Spaces, Studia Math., 25 (1965), 277–280.
-
[9]
O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{1,p(x)}\) , Czechoslovak Math. J., 41 (1991), 592–618.
-
[10]
W. M. Kozlowski, Modular Function Spaces, Marcel Dekker, New York (1988)
-
[11]
J. Musielak , Orlicz spaces and modular spaces, Springer-Verlag, Berlin (1983)
-
[12]
H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Tokyo (1950)
-
[13]
H. Nakano , Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508–512.
-
[14]
H. Nakano , Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo ( 1951)
-
[15]
W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200–211.
-
[16]
K. Rajagopal, M. Růžička , On the modeling of electrorheological materials, Mech. Research Comm., 23 (1996), 401–407.
-
[17]
M. Růžička, Electrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin (2000)
-
[18]
K. Sundaresan, Uniform convexity of Banach spaces \(\ell(\{p_i\})\), Studia Math., 39 (1971), 227–231.
-
[19]
D. Waterman, T. Ito, F. Barber, J. Ratti, Reflexivity and Summability: The Nakano \(\ell(p_i)\) spaces, Studia Math., 33 (1969), 141–146.