Journal of Nonlinear Sciences and Applications(JNSA) 2008-1898 2008-1901Journal of Nonlinear Sciences and ApplicationsJNSA 2008-1898 2008-1901International Scientific Research PublicationsJohor, Malaysiainfo@isr-publications.comisr-publications.comisr-publications.com/jnsa10.22436/jnsa.010.08.35Positive solutions for a system of nonlinear semipositone fractional \(q\)-difference equations with \(q\)-integral boundary conditionsChengWei
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
XuJiafa
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
CuiYujun
State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province, China;Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
270820172017108443044404430-4440https://www.isr-publications.com/jnsa/5381/download-positive-solutions-for-a-system-of-nonlinear-semipositone-fractional-q-difference-equations-with-q-integral-boundary-conditionshttps://www.isr-publications.com/jnsa/articles-5381-positive-solutions-for-a-system-of-nonlinear-semipositone-fractional-q-difference-equations-with-q-integral-boundary-conditions

In this paper, by virtue of fixed point index on cones, we obtain two existence theorems of positive solutions for a system of nonlinear semipositone fractional \(q\)-difference equations with \(q\)-integral boundary conditions. Concave functions and nonnegative matrices are used to characterize the coupling behavior of our nonlinearities.

34B1034B1834A3445G1545M20q-difference equationq-integral boundary conditionsfixed point indexpositive solutionconcave function.
R. P.Agarwal Certain fractional q-integrals and q-derivatives10.1017/S0305004100045060Proc. Cambridge Philos. Soc.196966365370 Y.Cui Y.ZouAn existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions10.1016/j.amc.2015.01.068Appl. Math. Comput.2015256438444R.Dahal D.Duncan C. S.GoodrichSystems of semipositone discrete fractional boundary value problems10.1080/10236198.2013.856073J. Difference Equ. Appl.201420473491R. A. C.FerreiraNontrivial solutions for fractional q-difference boundary-value problems10.14232/ejqtde.2010.1.70Electron. J. Qual. Theory Differ. Equ.20102010110 R. A. C.Ferreira Positive solutions for a class of boundary value problems with fractional q-differences10.1016/j.camwa.2010.11.012 Comput. Math. Appl.201161367373D.Guo V.LakshmikanthamNonlinear Problems in Abstract Cones Academic Press, Boston1988J.Henderson R.Luca Existence of positive solutions for a system of semipositone fractional boundary value problems10.14232/ejqtde.2016.1.22Electron. J. Qual. Theory Differ. Equ.20162016128J.Jiang L.Liu Y.Wu Positive solutions to singular fractional differential system with coupled boundary conditions10.1016/j.cnsns.2013.04.009Commun. Nonlinear Sci. Numer. Simulat.20131830613074V.Kac P.CheungQuantum CalculusSpringer, New York2002A.Kilbas H.Srivastava J.TrujilloTheory and Applications of Fractional Differential Equations Elsevier Science B.V., Amsterdam2006 B.Li S.Sun Z. HanPositive solutions for singular fractional differential equations with three-point boundary conditions10.1007/s12190-015-0950-2 J. Appl. Math. Comput.201652477488Y.Li Z.Wei Positive solutions for a coupled systems of mixed higher-order nonlinear singular fractional differential equationsFixed Point Theory201415167178 Y.LiuNew existence results for positive solutions of boundary value problems for coupled systems of multi-term fractional differential equations10.15672/HJMS.20164512499Hacet. J. Math. Stat.201645391416R.Luca A.TudorachePositive solutions to a system of semipositone fractional boundary value problems10.1186/1687-1847-2014-179Adv. Difference Equ.20142014111 I.PodlubnyFractional Differential EquationsAcademic Press, San Diego1999 P. M.Rajković S. D.Marinković M. S.Stanković Fractional integrals and derivatives in q-calculus10.2298/AADM0701311RAppl. Anal. Discrete Math.20071311323 S.Samko A.Kilbas O.MarichevFractional Integrals and Derivatives: Theory and ApplicationsGordon and Breach, USA1993X.SuBoundary value problem for a coupled systemof nonlinear fractional differential equations10.1016/j.aml.2008.03.001 Appl. Math. Lett.2009226469 Y.Wang L.Liu X.Zhang Y.WuPositive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection10.1016/j.amc.2015.01.080Appl. Math. Comput.2015258312324W.Yang Positive solutions for nonlinear semipositone fractional q-difference system with coupled integral boundary conditions10.1016/j.amc.2014.07.039 Appl. Math. Comput.2014244702725C.YuanTwo positive solutions for (n - 1, 1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations10.1016/j.cnsns.2011.06.008 Commun. Nonlinear Sci. Numer. Simul.201217930942X.Zhang L.Liu Y.WuThe uniqueness of positive solution for a singular fractional differential system involving derivatives10.1016/j.cnsns.2012.08.033Commun. Nonlinear Sci. Numer. Simul.20131814001409 X.Zhang L.Liu Y.WuThe uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium10.1016/j.aml.2014.05.002Appl. Math. Lett.2014372633 X.Zhang L.Liu Y.Wu B.WiwatanapatapheeThe spectral analysis for a singular fractional differential equation with a signed measure10.1016/j.amc.2014.12.068Appl. Math. Comput.2015257252263K.Zhang J.Xu D.O’ReganPositive solutions for a coupled system of nonlinear fractional differential equations10.1002/mma.3178Math. Meth. Appl. Sci.20153816621672