Youngs inequality for multivariate functions
-
4198
Downloads
-
4449
Views
Authors
Zlatko Pavić
- Mechanical Engineering Faculty in Slavonski Brod, University of Osijek, Slavonski Brod, 35000, China.
Abstract
This paper presents a generalization of Young's inequality to the real functions of several variables.
Moreover, the relevant facts about Young's inequality and its extension including improved proofs are
provided in a review. The basic results are initiated by applying the integral method to a strictly increasing
continuous function of one variable.
Share and Cite
ISRP Style
Zlatko Pavić, Youngs inequality for multivariate functions, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 9, 5403--5409
AMA Style
Pavić Zlatko, Youngs inequality for multivariate functions. J. Nonlinear Sci. Appl. (2016); 9(9):5403--5409
Chicago/Turabian Style
Pavić, Zlatko. "Youngs inequality for multivariate functions." Journal of Nonlinear Sciences and Applications, 9, no. 9 (2016): 5403--5409
Keywords
- Strictly increasing function
- integral sum
- Young's inequality
MSC
References
-
[1]
P. S. Bullen, The inequality of Young, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 357--380 (1970), 51--54
-
[2]
P. Cerone, On Young's inequality and its reverse for bounding the Lorenz curve and Gini mean, J. Math. Inequal., 3 (2009), 369--381
-
[3]
Jr. F. Cunningham, N. Grossman, On Young's inequality, Amer. Math. Monthly, 78 (1971), 781--783
-
[4]
J. B. Diaz, F. T. Metcalf, An analytic proof of Young's inequality, Amer. Math. Monthly, 77 (1970), 603--609
-
[5]
M. J. Merkle, A contribution to Young's inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 461--497 (1974), 265--267
-
[6]
F.-C. Mitroi, C. P. Niculescu, An extension of Young's inequality, Abstr. Appl. Anal., 2011 (2011), 18 pages
-
[7]
C. P. Niculescu, L.-E. Persson, Convex functions and their applications, A contemporary approach, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer, New York (2006)
-
[8]
J. I. Nieto, Una demonstración sencilla y elemental de la desigualdad de Young, Rev. Colombiana Estadíst., 8 (1974), 177--182
-
[9]
Z. Páles, On Young-type inequalities, Acta Sci. Math. (Szeged), 54 (1990), 327--338
-
[10]
Z. Pavić, Presentation of Young's inequality, J. Inequal. Spec. Funct., 6 (2015), 17--26
-
[11]
J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Boston (1992)
-
[12]
M. Sababheh, D. Choi, A complete refinement of Young's inequality, J. Math. Anal. Appl., 440 (2016), 379--393
-
[13]
A. Witkowski, On Young's inequality, JIPAM. J. Inequal. Pure Appl. Math., 2006 (2006), 3 pages
-
[14]
W. H. Young, On class of summable functions and there Fourier series, Proc. Roy. Soc. London A, 87 (1912), 225--229