Dual synchronization of chaotic and hyperchaotic systems
-
1972
Downloads
-
3576
Views
Authors
A. Almatroud Othman
- School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
M. S. M. Noorani
- School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
M. Mossa Al-Sawalha
- Mathematics Department, Faculty of Science, University of Hail, Kingdom of Saudi Arabia.
Abstract
The existence of the dual synchronization behavior between a pair of chaotic and hyperchaotic systems is
investigated via a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear
feedback term. The sufficient conditions for achieving the dual synchronization behavior between a pair of
chaotic and hyperchaotic systems using a nonlinear feedback controller are derived by using the Lyapunov
stability theorem. The dual synchronization behavior between a pair of chaotic systems (Chen and Lorenz
system) and a pair of hyperchaotic systems hyperchaotic Chen system and hyperchaotic Lü system are
taken as two illustrative examples to show the effectiveness of the proposed method. Theoretical analysis
and numerical simulations are performed to verify the results.
Share and Cite
ISRP Style
A. Almatroud Othman, M. S. M. Noorani, M. Mossa Al-Sawalha, Dual synchronization of chaotic and hyperchaotic systems, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 6, 4666--4677
AMA Style
Othman A. Almatroud, Noorani M. S. M., Al-Sawalha M. Mossa, Dual synchronization of chaotic and hyperchaotic systems. J. Nonlinear Sci. Appl. (2016); 9(6):4666--4677
Chicago/Turabian Style
Othman, A. Almatroud, Noorani, M. S. M., Al-Sawalha, M. Mossa. "Dual synchronization of chaotic and hyperchaotic systems." Journal of Nonlinear Sciences and Applications, 9, no. 6 (2016): 4666--4677
Keywords
- Dual synchronization
- chaos
- hyperchaos
- lyapunov stability theory.
MSC
- 34D06
- 93C15
- 93C10
- 34H10
- 93C95
- 93D05
References
-
[1]
G. Chen, X. Dong, From chaos to order, methodologies, perspectives and applications, World Scientific Publishing Co., River Edge, NJ (1998)
-
[2]
A. Chen, J. Lu, J. Lü, S. Yu, Generating hyperchaotic Lü attractor via state feedback control, Phys. A, 364 (2006), 103--110
-
[3]
H. H. Chen, G. J. Sheu, Y. L. Lin, C. S. Chen, Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear Anal., 70 (2009), 4393--4401
-
[4]
G. Chen, T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1465--1476
-
[5]
C. F. Feng, Projective synchronization between two different time-delayed chaotic systems using active control approach, Nonlinear Dyn., 62 (2010), 453--459
-
[6]
D. Ghosh, Projective-dual synchronization in delay dynamical systems with time-varying coupling delay, Nonlinear Anal., 66 (2011), 717--730
-
[7]
D. Ghosh, R. A. Chowdhury, Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems, Phys. Lett. A, 374 (2010), 3425--3436
-
[8]
J. La Salle, S. Lefschetz, Stability by Liapunov's direct method, with applications, Academic Press, New York (1961)
-
[9]
Y. T. A. Leung, X. F. Li, Y. D. Chu, X. B. Rao, A simple adaptive-feedback scheme for identical synchronizing chaotic systems with uncertain parameters, Appl. Math. Comput., 253 (2015), 172--183
-
[10]
W. Li, Z. Liu, J. Miao, Adaptive synchronization for a unified chaotic system with uncertainty, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3015--3021
-
[11]
Y. Li, W. K. Tang, G. Chen, Generating hyperchaos via state feedback control, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3367--3375
-
[12]
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130--141
-
[13]
D. Ning, J. Lu, X. Han, Dual synchronization based on two different chaotic systems: Lorenz systems and Rössler systems, J. Comput. Appl. Math., 206 (2007), 1046--1050
-
[14]
M. S. M. Noorani, M. M. Al-Sawalha, Adaptive dual synchronization of chaotic and hyperchaotic systems with fully uncertain parameters, Optik-Int. J. Light Electron Optics, 127 (2016), 7852--7864
-
[15]
E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore, Dual and dual-cross synchronization in chaotic systems, Opt. Commun., 216 (2003), 179--183
-
[16]
P. P. Singh, J. P. Singh, B. K. Roy, Synchronization and anti-synchronization of Lu and Bhalekar-Gejji chaotic systems using nonlinear active control, Chaos Solitons Fractals, 69 (2014), 31--39
-
[17]
J. J. E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs, Prentice-Hall, New Jersey (1991)
-
[18]
A. Uchida, S. Kinugawa, T. Matsuura, S. Yoshimori, Dual synchronization of chaos in one-way coupled microchip lasers, Phys. Rev. E, 68 (2003), 026220
-
[19]
C. Wang, Y. He, J. Ma, L. Huang, Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems, Complexity, 20 (2014), 64--73
-
[20]
K. Yoshimura, Multichannel digital communications by the synchronization of globally coupled chaotic systems, Phys. Rev. E, 60 (1999), 1648--1657
-
[21]
Z. Zhang, J. H. Park, H. Shao, Adaptive synchronization of uncertain unified chaotic systems via novel feedback controls, Nonlinear Dyn., 81 (2015), 695--706
-
[22]
S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems with different order, Appl. Math. Comput., 218 (2012), 5891--5899