Fixed point theorems on generalized metric space endowed with graph
-
4409
Downloads
-
5885
Views
Authors
Tayyab Kamran
- Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.
Mihai Postolache
- Department of Mathematics and Informatics, University Politehnica of Bucharest, 060042 Bucharest, Romania.
Fahim Uddin
- Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.
- Center for Advanced Studies in Engineering (CASE), Islamabad, Pakistan.
Muhammad Usman Ali
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences (FAST), H-11/4 Islamabad, Pakistan.
Abstract
In this paper, we prove some fixed point theorems for mappings of generalized metric space endowed
with graph. We also construct examples to support our results.
Share and Cite
ISRP Style
Tayyab Kamran, Mihai Postolache, Fahim Uddin, Muhammad Usman Ali, Fixed point theorems on generalized metric space endowed with graph, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 6, 4277--4285
AMA Style
Kamran Tayyab, Postolache Mihai, Uddin Fahim, Ali Muhammad Usman, Fixed point theorems on generalized metric space endowed with graph. J. Nonlinear Sci. Appl. (2016); 9(6): 4277--4285
Chicago/Turabian Style
Kamran, Tayyab, Postolache, Mihai, Uddin, Fahim, Ali, Muhammad Usman. "Fixed point theorems on generalized metric space endowed with graph." Journal of Nonlinear Sciences and Applications, 9, no. 6 (2016): 4277--4285
Keywords
- Generalized metric space
- G-Contraction
- G-continuity.
MSC
References
-
[1]
F. Bojor, Fixed point of \(\phi\)-contraction in metric spaces endowed with a graph, An. Univ. Craiova Ser. Mat. Inform., 37 (2010), 85-92 .
-
[2]
A. Bucur, L. Guran, A. Petrusel, Fixed points for multivalued operators on a set endowed with vector-valued metrics and applications, Fixed Point Theory, 10 (2009), 19-34.
-
[3]
A.-D. Filip, A. Petrusel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl., 2010 (2010), 15 pages.
-
[4]
J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Am. Math. Soc., 136 (2008), 1359-1373.
-
[5]
T. Kamran, M. Samreen, N. Shahzad , Probabilistic G-contractions, Fixed Point Theory Appl., 2013 (2013), 14 pages.
-
[6]
D. O'Regan, N. Shahzad, R. P. Agarwal , Fixed Point Theory for Generalized Contractive Maps on Spaces with Vector-Valued Metrics, Fixed Point Theory Appl., 6 (2007), 143-149.
-
[7]
A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pribli. Metod. Reen. Differencial. Uravnen. Vyp., 2 (1964), 115-134.
-
[8]
I. A. Rus, Principles and Applications of the Fixed Point Theory, Dacia, Cluj-Napoca, Romania (1979)
-
[9]
M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory Appl., 2013 (2013), 11 pages.
-
[10]
M. Samreen, T. Kamran, N. Shahzad, Some fixed point theorems in b-metric space endowed with a graph, Abstr. Appl. Anal., 2013 (2013), 9 pages.
-
[11]
T. Sistani, M. Kazemipour, Fixed point theorems for \(\alpha-\psi\)-contractions on metric spaces with a graph, J. Adv. Math. Stud., 7 (2014), 65-79.
-
[12]
M. Turinici , Finite-dimensional vector contractions and their fixed points , Studia Univ. Babe-Bolyai Math., 35 (1990), 30-42.
-
[13]
R. S. Varga, Matrix Iterative Analysis , Springer-Verlag, Berlin (2000)
-
[14]
C. Vetro, F. Vetro, Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results, Topology Appl., 164 (2014), 125-137.