Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator
-
2481
Downloads
-
3944
Views
Authors
Ritu Agarwal
- Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India.
Sonal Jain
- Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, India.
R. P. Agarwal
- Department of Mathematics, Texas A & M University, Kingsville 700 University Blvd. Kingsville, TX 78363-8202.
Abstract
The aim of this paper is to investigate the solutions of Time-space fractional advection-dispersion equation
with Hilfer composite fractional derivative and the space fractional Laplacian operator. The solution of
the equation is obtained by applying the Laplace and Fourier transforms, in terms of Mittag-leffler function.
The work by R. K. Saxena (2010) and Haung and Liu (2005) follows as particular case of our results.
Share and Cite
ISRP Style
Ritu Agarwal, Sonal Jain, R. P. Agarwal, Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 6, 3545--3554
AMA Style
Agarwal Ritu, Jain Sonal, Agarwal R. P., Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator. J. Nonlinear Sci. Appl. (2016); 9(6):3545--3554
Chicago/Turabian Style
Agarwal, Ritu, Jain, Sonal, Agarwal, R. P.. "Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator." Journal of Nonlinear Sciences and Applications, 9, no. 6 (2016): 3545--3554
Keywords
- Time-space fractional advection-dispersion equation
- Fourier transform
- Laplace transform
- composite fractional derivative
- H-function
- Mittag-Leffler function
- fractional Laplace operator.
MSC
References
-
[1]
M. Basu, D. P. Acharya, On quadratic fractional generalized solid bi-criterion transportation problem, J. Appl. Math. Comput., 10 (2002), 131-144.
-
[2]
D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resources Research, 36 (2000), 1403-1412.
-
[3]
D. Brockmann, I. M. Sokolov, Levy flights in external force fields: from model to equations, Chem. Phys., 284 (2002), 409-421.
-
[4]
M. Caputo, Elasticita e dissipazione, Zani-Chelli, Bologana (1969)
-
[5]
L. Debnath, D. Bhatta, Integral Transforms and their Applications, CRC Press, Boca Raton (1995)
-
[6]
M. A. A. El-Sayed, M. A. E. Aly, Continuation theorem of fractional order evolutionary integral equations, Korean J. Comput. Appl. Math., 9 (2002), 525-533
-
[7]
H. J. Haubold, A. M. Mathai, R. K. Saxena, Solution of reaction-diffusion equations in terms of the H-function, Bull. Astro. Soc. India., 35 (2007), 681-689.
-
[8]
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)
-
[9]
F. Huang, F. Liu , The Fundamental Solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Comput., 18 (2005), 339-350.
-
[10]
L. Javandel, C. Doughly, F. C. Tsang, Groundwater Transport: Handbook of Mathematical Models, American Geophysical Union, Michigan (1984)
-
[11]
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Plank Equation, J. Comp. Appl. Math., 166 (2004), 209-319.
-
[12]
F. Liu, I. Turner, V. Anh, An unstructured mesh finite volume method for modelling saltwater intrusion into coatal aquifer, Korean J. Comput. Appl. Math., 9 (2002), 391-407.
-
[13]
F. Liu, I. W. Turner, V. Anh, N. Su, A two-dimensional finite volume method for transient simulation of time scale and density-dependent transport in heterogeneous aquifer systems, Korean J. Comput. Appl. Math., 11 (2003), 215-241.
-
[14]
F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics Fraction(A. Carpinteri, F. Mainardi, Eds.) , chapter: fractional calculus, 291-348, Springer, Wien (1997)
-
[15]
A. M. Mathai, R. K. Saxsena, H. J. Haubold, The H-function: Theory and Applications, Springer, New York (2010)
-
[16]
M. M. Meerschaert, D. A. Benson, B. Baumer, Multidimensional advection and fractional dispersion, Phys. Rev. E., 59 (1999), 5026-5028.
-
[17]
R. K. Pandey, O. P. Singh, V. K. Baranwal, M. P. Tripathi , An analytic solution for the space-time fractional advection-dispersion equation using the optimal homotopy asymptotic method, Comput. Phys. Commun., 183 (2012), 2098-2106.
-
[18]
S. G. Samko, A. A. Kilbas, O. I. Marichev , Fractional Integrals and derivatives-Theory and applications, CRC Press, Linghorne (1993)
-
[19]
R. K. Saxena, R. Saxena, S. L. Kalla , Solution of the space-time fractional Schrödinger equation equation occuring in quantum mechanics, Fract. Calc. Appl. Anal., 13 (2010), 177-190.
-
[20]
R. Schumer, D. A. Benson, M. M. Meerschaert, S. W. Wheatcraft, Eulerian derivation of the factional adverction- dispersion equation, J. Contam. Hydrol., 48 (2001), 69-88.
-
[21]
I. N. Sneddon, Fourier Transform, MacGraw-Hill, New York (1951)
-
[22]
A. Wiman, ber den Fundamentalsatz in der Teorie der Funktionen Ea(x), (German), Acta Math., 29 (1905), 191-201.