Solution to an ice melting cylindrical problem
-
2256
Downloads
-
4199
Views
Authors
Abdellatif Boureghda
- Department of Mathematics, Ferhat Abbas University, Sétif 1, Algeria.
Abstract
We give a solution to an ice melting cylindrical problem using the ''modified variable time step method'',
earlier suggested by the author. New numerical techniques are proposed for the one-dimensional melting
problem. The numerical results are obtained for the position of the moving boundary, time and temperatures.
Share and Cite
ISRP Style
Abdellatif Boureghda, Solution to an ice melting cylindrical problem, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 4, 1440--1452
AMA Style
Boureghda Abdellatif, Solution to an ice melting cylindrical problem. J. Nonlinear Sci. Appl. (2016); 9(4):1440--1452
Chicago/Turabian Style
Boureghda, Abdellatif. "Solution to an ice melting cylindrical problem." Journal of Nonlinear Sciences and Applications, 9, no. 4 (2016): 1440--1452
Keywords
- Stefan problems
- phase changes
- moving boundary problems
- partial differential equations
- finite difference methods
- heat equation.
MSC
- 35R35
- 35R37
- 80A22
- 65M06
- 65N06
- 35K05
References
-
[1]
N. S. Asaithambi, A Galerkin method for Stefan problems, Appl. Math. Comput., 52 (1992), 239-250.
-
[2]
A. Boureghda, Numerical methods for solving one dimensional problems with a moving boundary, M. Sc. thesis, Department of Computing Science, Glasgow University, Scotland, United Kingdom (1988)
-
[3]
A. Boureghda, Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary, Comm. Numer. Methods Engrg., 22 (2006), 933-942.
-
[4]
A. Boureghda, Numerical solution of the oxygen diffusion problem in cylindrically shaped sections of tissue, Internat. J. Numer. Methods Fluids, 56 (2008), 1945-1960.
-
[5]
A. Boureghda, Moving boundary value problems, Doctorat en Sciences Mathématiques (Ph.D thesis), between Department of Mathematics, Ferhat Abbas University, Sétif Algeria and LMIA Haute Alsace University, Mulhouse, France (2008)
-
[6]
A. Boureghda, A modified variable time step method for solving ice melting problem, J. Difference Equ. Appl., 18 (2012), 1443-1455.
-
[7]
J. Caldwell, Y. Y. Kwan, Numerical methods for one-dimensional Stefan problems, Comm. Numer. Methods Engrg., 20 (2004), 535-545.
-
[8]
J. Caldwell, Y. Y. Kwan, Starting solutions for the boundary immobilization method, Comm. Numer. Methods Engrg., 21 (2005), 289-295.
-
[9]
J. Crank, Finite difference methods, in: Moving Boundary Problems in Heat Flow and Diffusion, ed. by J. R. Ockendon and R. Hodgkins, Clarendon Press, Oxford (1974)
-
[10]
J. Crank, Free and moving boundary problems, Clarendon Press, Oxford (1984)
-
[11]
J. Douglas, A uniqueness theorem for the solution of Stefan problem, Proc. Amer. Math. Soc., 8 (1957), 402-408.
-
[12]
A. Esen, S. Kutluay, A numerical solution of the Stefan problem with a Neumann type boundary condition by enthalpy method, Appl. Math. Comput., 148 (2004), 321-329.
-
[13]
G. W. Evans, A note on the existence of a solution to a problem of Stefan, Quart. Appl. Math., 9 (1951), 185-193.
-
[14]
L. Fox, What are the best numerical methods in Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975)
-
[15]
R. M. Furzeland , A survey of the formulation and solution of free and moving boundary Stefan problems, Brunel University Technical Report, London (1977)
-
[16]
R. M. Furzeland , A comparative study of numerical methods for moving boundary, J. Inst. Math. Appl., 26 (1980), 411-429.
-
[17]
J. M. Hill, One-dimensional Stefan problems: an introduction, John Wiley & Sons, Inc., New York (1987)
-
[18]
K. H. Hoffmann, Fachbereich Mathematik, Berlin Freie Univesitat, Germany (1977)
-
[19]
E. Javierre, C. Vuik, F. J. Vermolen, S. Van der Zwaag, A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., 192 (2006), 445-459.
-
[20]
S. Kutluay , Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., 168 (2005), 1159-1168.
-
[21]
S. Kutluay, A. Esen, An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput., 150 (2004), 59-67.
-
[22]
W. D. Murray, F. Landis, Numerical and machine solutions of transient heat-conduction problems involving melting or freezing, J. Heat Transfer, 81 (1959), 106-112.
-
[23]
J. Ockendon, W. Hodgkins, Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford (1975)