Almost strongly \(\theta\)-e-continuous functions
-
1908
Downloads
-
3488
Views
Authors
Murad Özkoç
- Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Menteşe-Muğla, Turkey.
Burcu Sünbül Ayhan
- Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Menteşe-Muğla, Turkey.
Abstract
We introduce and investigate a new class of functions called almost strongly \(\theta\)-e-continuous functions,
containing the classes of almost strongly \(\theta\)-precontinuous [J. H. Park, S. W. Bae, Y. B. Park, Chaos Solitons
Fractals, 28 (2006), 32-41], almost strongly \(\theta\)-semicontinuous [Y. Beceren, S. Yüksel, E. Hatir, Bull.
Calcutta Math. Soc., 87 (1995), 329-334] and strongly \(\theta\)-e-continuous functions [M. Özkoç, G. Aslım,
Bull. Korean Math. Soc., 47 (2010), 1025-1036]. Several characterizations concerning almost strongly
\(\theta\)-e-continuous functions are obtained. Also we investigate the relationships between almost strongly \(\theta\)-e-
continuous functions and separation axioms and almost strongly e-closedness of graphs of functions.
Share and Cite
ISRP Style
Murad Özkoç, Burcu Sünbül Ayhan, Almost strongly \(\theta\)-e-continuous functions, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 4, 1619--1635
AMA Style
Özkoç Murad, Ayhan Burcu Sünbül, Almost strongly \(\theta\)-e-continuous functions. J. Nonlinear Sci. Appl. (2016); 9(4):1619--1635
Chicago/Turabian Style
Özkoç, Murad, Ayhan, Burcu Sünbül. "Almost strongly \(\theta\)-e-continuous functions." Journal of Nonlinear Sciences and Applications, 9, no. 4 (2016): 1619--1635
Keywords
- Almost strong \(\theta\)-e-continuity
- e-open
- e-\(\theta\)-open
- almost e-regular
- almost strongly e-closed.
MSC
References
-
[1]
M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud , \(\beta\)-open sets and \(\beta\)-continuous mapping, Bull. Fac. Sci. Assiut Univ. A, 12 (1983), 77-90.
-
[2]
D. Andrijević , Semipreopen sets, Mat. Vesnik, 38 (1986), 24-32.
-
[3]
D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
-
[4]
Y. Beceren, S. Yüksel, E. Hatir , On almost strongly \(\theta\)-semicontinuous functions, Bull. Calcutta Math. Soc., 87 (1995), 329-334.
-
[5]
D. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital., 6 (1972), 146-153.
-
[6]
D. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis, Univ. of Arkansas, (1973)
-
[7]
E. Ekici, New forms of contra continuity, Carpathian J. Math., 24 (2008), 37-45
-
[8]
E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity , Arab. J. Sci. Eng., Sect. A Sci., 33 (2008), 269-282.
-
[9]
N. Ergun, On nearly paracompact spaces, Istanbul Univ. Fen Fak. Mecm. Ser. A, 45 (1980), 65-87.
-
[10]
R. C. Jain, The role of regularly open sets in general topology, Ph. D. Thesis, Meerut University, Institute of Advanced Studies (1980)
-
[11]
A. M. F. A. Jumaili, X. S. Yang , On e-closed spaces and \(\theta\)-e-continuous functions, Math. Modell. Sci. Comput. Springer Berlin Heidelberg, 283 (2012), 32-46.
-
[12]
N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
-
[13]
A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
-
[14]
M. Mršević, I. L. Reilly, M. K. Vamanamurthy, On semi-regularization topologies, J. Austral. Math. Soc. Ser. A, 38 (1985), 40-54.
-
[15]
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
-
[16]
T. Noiri , On \(\delta\)-continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
-
[17]
T. Noiri, S. M. Kang, On almost strongly \(\theta\)-continuous functions, Indian J. Pure Appl. Math., 15 (1984), 1-8.
-
[18]
T. Noiri, I. Zorlutuna, Almost strongly \(\theta\)-b-continuous functions, Stud. Cercet. Ştiinţ. Ser. Mat., Univ. Bacău, 18 (2008), 193-210.
-
[19]
M. Özkoç, G. Aslım, On strongly \(\theta\)-e-continuous functions, Bull. Korean Math. Soc., 47 (2010), 1025-1036.
-
[20]
M. Özkoç, N. Elçi, On e-locally closed sets and related topics, , (Submitted),
-
[21]
J. H. Park, S. W. Bae, Y. B. Park, Almost strongly \(\theta\)-precontinuous functions, Chaos Solitons Fractals, 28 (2006), 32-41.
-
[22]
M. K. Singal, A. Mathur , On nearly-compact spaces, Boll. Un. Mat. Ital., 2 (1969), 702-710.
-
[23]
M. K. Singal, S. Prabha Arya, On almost-regular spaces, Glasnik Mat. Ser. III, 4 (1969), 89-99.
-
[24]
M. K. Singal, A. R. Singal , Almost continuous mappings , Yokohoma Math. J., 16 (1968), 63-73.
-
[25]
N. V. Veličko, H-closed topological spaces, (Russian), Mat. Sb. (N. S.), 70 (1966), 98-112.