Modified Noor iterations with errors for nonlinear equations in Banach spaces
-
1956
Downloads
-
2757
Views
Authors
G. A. Okeke
- Department of Mathematics, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria.
J. O. Olaleru
- Department of Mathematics, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria.
Abstract
We introduce a new three step iterative scheme with errors to approximate the unique common fixed point
of a family of three strongly pseudocontractive (accretive) mappings on Banach spaces. Our results are
generalizations and improvements of results obtained by several authors in literature. In particular, they
generalize and improve the results of Mogbademu and Olaleru [A. A. Mogbademu and J. O. Olaleru, Bull.
Math. Anal. Appl., 3 (2011), 132-139], Xue and Fan [Z. Xue and R. Fan, Appl. Math. Comput., 206
(2008), 12-15] which is in turn a correction of Rafiq [A. Rafiq, Appl. Math. Comput., 182 (2006), 589-595].
Share and Cite
ISRP Style
G. A. Okeke, J. O. Olaleru, Modified Noor iterations with errors for nonlinear equations in Banach spaces, Journal of Nonlinear Sciences and Applications, 7 (2014), no. 3, 180--187
AMA Style
Okeke G. A., Olaleru J. O., Modified Noor iterations with errors for nonlinear equations in Banach spaces. J. Nonlinear Sci. Appl. (2014); 7(3):180--187
Chicago/Turabian Style
Okeke, G. A., Olaleru, J. O.. "Modified Noor iterations with errors for nonlinear equations in Banach spaces." Journal of Nonlinear Sciences and Applications, 7, no. 3 (2014): 180--187
Keywords
- Three-step iterative scheme with errors
- Banach spaces
- strongly pseudocontractive operators
- unique common fixed point
- strongly accretive.
MSC
References
-
[1]
F. E. Browder, Nonlinear mappings of nonexpansive and accretive in Banach space, Bull. Amer. Math. Soc., 73 (1967), 875-882.
-
[2]
S. S. Chang, Y. J. Cho, B. S. Lee, S. H. Kang , Iterative approximation of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl., 224 (1998), 165-194.
-
[3]
L. J. Ćirić, J. S. Ume, Ishikawa iteration process for strongly pseudocontractive operator in arbitrary Banach space, Commun, 8 (2003), 43-48.
-
[4]
R. Glowinski, P. Le-Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia (1989)
-
[5]
S. Haubruge, V. H. Nguyen, J. J. Strodiot , Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. , 97 (1998), 645-673.
-
[6]
S. Ishikawa , Fixed points by a new iteration method , Proc. Amer. Math. Soc., 44 (1974), 147-150.
-
[7]
S. Jain, S. Jain, L. B. Jain , On Banach contraction principle in a cone metric space , Journal of Nonlinear Science and Applications, 5 (2012), 252-258.
-
[8]
T. Kato , Nonlinear semigroup and evolution equations, J. Math. Soc. Jpn., 19 (1967), 508-520.
-
[9]
L. S. Liu, Fixed points of local strictly pseudo-contractive mappings using Mann and Ishikawa iterations with errors, Indian J. Pure Appl. Math., 26 (1995), 649-659.
-
[10]
W. R. Mann, Mean Value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
-
[11]
A. A. Mogbademu, J. O. Olaleru, Modifed Noor iterative methods for a family of strongly pseudocontractive maps, Bulletin of Mathematical Analysis and Applications , 3 (2011), 132-139.
-
[12]
C. H. Morales, J. J. Jung, Convergence of path for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc., 120 (2000), 3411-3419.
-
[13]
H. K. Nashine, M. Imdad, M. Hasan, Common fixed point theorems under rational contractions in complex valued metric spaces, Journal of Nonlinear Science and Applications, 7 (2014), 42-50.
-
[14]
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217-229.
-
[15]
M. A. Noor , Three-step iterative algorithms for multi-valued quasi variational inclusions, J. Math. Anal. Appl., 255 (2001), 589-604.
-
[16]
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Computation, 152 (2004), 199- 277.
-
[17]
M. A. Noor, T. M. Rassias, Z. Y. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., 274 (2002), 59-68.
-
[18]
J. O. Olaleru, A. A. Mogbademu, On modified Noor iteration scheme for non-linear maps, Acta Math. Univ. Comenianae, 2 (2011), 221-228.
-
[19]
J. O. Olaleru, G. A. Okeke, Convergence theorems on asymptotically demicontractive and hemicontractive mappings in the intermediate sense, Fixed Point Theory and Applications, 2013 (2013), 352
-
[20]
A. Rafiq , Modified Noor iterations for nonlinear equations in Banach spaces, Applied Mathematics and Computation, 182 (2006), 589-595.
-
[21]
G. S. Saluja, Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators, J. Nonlinear Sci. Appl., 4 (2011), 292-307.
-
[22]
S. Suantai , Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506-517.
-
[23]
X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc., 113 (1991), 727-731.
-
[24]
Y. G. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., 224 (1998), 91-101.
-
[25]
Z. Xue, R. Fan, Some comments on Noor's iterations in Banach spaces, Applied Mathematics and Computation, 206 (2008), 12-15.
-
[26]
K. S. Zazimierski, Adaptive Mann iterative for nonlinear accretive and pseudocontractive operator equations, Math. Commun., 13 (2008), 33-44.
-
[27]
H. Y. Zhou, Y. Jia, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumptions, Proc. Amer. Math. Soc., 125 (1997), 1705-1709.