Fixed point theorems for completely positive maps in \(C^\star\text{-algebra}\)-valued bipolar \(b\)-metric spaces with non-solid cones and applications to quantum mechanics
Authors
A. T. Bokodisa
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
A. Aphane
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Pretoria, South Africa.
Abstract
We develop a fixed point theorem for completely positive maps in C\(^\star\)-algebra-valued bipolar \(b\)-metric spaces over non-solid cones-settings in which the interior of the positivity cone is empty and classical norm-based techniques fail. Our contraction condition replaces the standard scalar inequality \(d(Tx, Ty) \leq k d(x, y)\) with an operator inequality \(\varphi(Tx, Ty) \preceq \Gamma(\varphi(x, y))\), where \(\Gamma\) is a completely positive map satisfying \(
< 1\). When \(\Gamma\) is scalar multiplication, our result precisely recovers the Banach contraction principle, showing that it is a special case of our operator-theoretic framework. This approach leverages spectral radius decay and Kraus operator representations to establish existence and uniqueness of fixed points, even in the absence of interior-point structure. Applications include the asymptotic convergence of quantum channels to steady-state density matrices and the stability of operator-based learning models. Our results unify and extend several recent generalizations of fixed point theory, offering a new analytic foundation for contraction behavior in operator-valued and quantum systems.
Share and Cite
ISRP Style
A. T. Bokodisa, A. Aphane, Fixed point theorems for completely positive maps in \(C^\star\text{-algebra}\)-valued bipolar \(b\)-metric spaces with non-solid cones and applications to quantum mechanics, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 4, 259--271
AMA Style
Bokodisa A. T., Aphane A., Fixed point theorems for completely positive maps in \(C^\star\text{-algebra}\)-valued bipolar \(b\)-metric spaces with non-solid cones and applications to quantum mechanics. J. Nonlinear Sci. Appl. (2025); 18(4):259--271
Chicago/Turabian Style
Bokodisa, A. T., Aphane, A.. "Fixed point theorems for completely positive maps in \(C^\star\text{-algebra}\)-valued bipolar \(b\)-metric spaces with non-solid cones and applications to quantum mechanics." Journal of Nonlinear Sciences and Applications, 18, no. 4 (2025): 259--271
Keywords
- \(C^\star\text{-algebra}\)
- quantum mechanics
- operator-based models
- completely positive maps
- non-solid cones
- fixed point theory
- bipolar b-metric spaces
MSC
References
-
[1]
W. B. Arveson, Subalgebras of C∗-algebras, Acta Math., 123 (1969), 141–224
-
[2]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[3]
A. Bokodisa, M. Aphane, Existence and uniqueness of fixed point results in non-solid C⋆-algebra-valued bipolar b-metric spaces, Preprint, (2025), 15 pages
-
[4]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11
-
[5]
J. Fernández, N. Malviya, A. Savi´c, M. Paunovi´c, Z. D. Mitrovi´c, The extended cone b-metric-like spaces over Banach algebra and some applications, Mathematics, 10 (2022), 11 pages
-
[6]
M. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1–72
-
[7]
U. Gaba, M. Aphane, H. Aydi, (α, BK)-contractions in bipolar metric spaces, J. Math., 2021 (2021), 6 pages
-
[8]
I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] N.S., 9(51) (1941), 3–24
-
[9]
U. Gürdal, A. Mutlu, K. Özkan, Fixed point results for α-ψ-contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75
-
[10]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476
-
[11]
R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, American Mathematical Society, Providence, RI (1997)
-
[12]
K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, Springer, Berlin, Heidelberg (1983)
-
[13]
E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York (1989)
-
[14]
V. Kumar, U. S. Rana, A. Tomar, Fixed point, its geometry, and application via ω-interpolative contraction of Suzuki type mapping, Math. Methods Appl. Sci., 47 (2024), 3507–3528
-
[15]
M. Kumar, P. Kumar, A. Mutlu, R. Ramaswamy, O. A. Ashour Abdelnaby, S. Radenovi´c, Ulam–Hyers stability and well-posedness of fixed point problems in C⋆-algebra-valued bipolar b-metric spaces, Mathematics, 11 (2023), 14 pages
-
[16]
Z. Ma, L. Jiang, C∗-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 12 pages
-
[17]
Z. Ma, L. Jiang, H. Sun, C∗-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 11 pages
-
[18]
G. Mani, A. J. Gnanaprakasam, A. Ul Haq, I. A. Baloch, F. Jarad, Coupled fixed point theorems on C∗-algebra valued bipolar metric spaces, AIMS Math., 7 (2022), 7552–7568
-
[19]
G. J. Murphy, C∗-algebras and operator theory, Academic Press, Inc., Boston, MA (1990)
-
[20]
A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373
-
[21]
P. D. Nation, J. R. Johansson, M. P. Blencowe, A. J. Rimberg, Iterative solutions to the steady-state density matrix for optomechanical systems, Phys. Rev. E (3), 91 (2015), 9 pages
-
[22]
A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Priblijen. Metod Res. Dif. Urav Kiev, 2 (1964), 115–134
-
[23]
O. Szehr, M. M. Wolf, Perturbation bounds for quantum Markov processes and their fixed points, J. Math. Phys., 54 (2013), 10 pages
-
[24]
J. Watrous, The Theory of Quantum Information, Cambridge University Press, Cambridge (2018)
-
[25]
S. Xu, S. Cheng, Y. Han, Non-solid cone b-metric spaces over Banach algebras and fixed point results of contractions with vector-valued coefficients, Open Math., 21 (2023), 13 pages