Nonlinear dynamics and synchronization of an excited Josephson junction
Authors
G. F. Pomalegni
- École de Génie Rural, Université Nationale d’Agriculture, Kétou, Bénin.
M. A. Kakpo
- Laboratoire de la Mécanique des Fluides, de la Dynamique Nonlinéaire et de la Modélisation des Systèmes Biologiques (LMFDNMSB), Institut de Mathématiques et de Sciences Physiques, Porto-Novo, Bénin.
C. H. Miwadinou
- Laboratoire de la Mécanique des Fluides, de la Dynamique Nonlinéaire et de la Modélisation des Systèmes Biologiques (LMFDNMSB), Institut de Mathématiques et de Sciences Physiques, Porto-Novo, Bénin.
Abstract
This work studies the non-harmonic dynamics of the \textbf{RCLSJ} (resistively, capacitively and inductively shunted junction) model of the Josephson junction shunted by a negative conductance and by a multi-periodic pulse source which shares the same frequency as the excitation current. The negative conductance is in series with the \textbf{RCLSJ} model of the Josephson junction which has a non-harmonic parameter and the whole is coupled to a source multi-periodic pulse in line with an inductive circuit with internal resistance. The multi-periodic pulse source is used so that the oscillations of the excitation current do not weaken over time and to compensate for the energy losses occurring during each period. The fixed points of the system are determined and are analyzed from the differential equations which govern its dynamics. The mode of operation of this model depends of the frequency of the multi-periodic pulse source pulsation and the thermodynamic properties of the junction. Alignment of system signals to maintain timing is achieved for a range of multi-periodic pulse source pulsation values and negative conductance voltage values using the backstepping technique. A complete study of the circuit studied is done digitally to detect new bifurcations and pathways leading to chaos. The contribution of the negative conductance and the multi-periodic pulse is also analyzed.
Share and Cite
ISRP Style
G. F. Pomalegni, M. A. Kakpo, C. H. Miwadinou, Nonlinear dynamics and synchronization of an excited Josephson junction, Journal of Nonlinear Sciences and Applications, 18 (2025), no. 4, 225--238
AMA Style
Pomalegni G. F., Kakpo M. A., Miwadinou C. H., Nonlinear dynamics and synchronization of an excited Josephson junction. J. Nonlinear Sci. Appl. (2025); 18(4):225--238
Chicago/Turabian Style
Pomalegni, G. F., Kakpo, M. A., Miwadinou, C. H.. "Nonlinear dynamics and synchronization of an excited Josephson junction." Journal of Nonlinear Sciences and Applications, 18, no. 4 (2025): 225--238
Keywords
- Bifurcation and chaos
- Josephson junction
- internal resistance
- multi-periodic pulse
- intermittency
- synchronization
MSC
References
-
[1]
C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S. Gronin, G. C. Gardner, T. Lindemann, M. J. Manfra, P. E. F. Junior, D. Kochan, J. Fabian, N. Paradiso, C. Strunk, Supercurrent rectification and magnetochiral effects in symmetric Josephson junction, Nat. Nanotechnol., 17 (2022), 39–44
-
[2]
S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza, The control of chaos: theory and applications, Phys. Rep., 329 (2000), 103–197
-
[3]
D. Brecioux, P. Lucignano, Quantum transport in Rashba spin–orbit materials: a review, Rep. Prog. Phys., 78 (2015),
-
[4]
H.-J. Chen, Q.-X. Ji, H. Wang, Q.-. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao, Chaos-assisted two-octave-spanning microcombs, Nat. Commun., 11 (202), 6 pages
-
[5]
A. Danilenko, D. Sabonis, G. W. Winkler, O. Erlandsson, P. Krogstrup, C. M. Marcus, Few-mode to mesoscopic junctions in gatemon qubits, Phys. Rev. B, 108 (2023),
-
[6]
M. C. Dartiailh, W. Mayer, J. Yuan, K. S. Wickramasinghe, A. Matos-Abiague, I. Zutic, J. Shabani, Phase signature of topological transition in Josephson junction, Phys. Rev. Lett., 126 (2021),
-
[7]
I. M. Dayton, T. Sage, E. C. Gingrich, M. G. Loving, T. F. Ambrose, N. P. Siwak, Experimental demonstration of a Josephson magnetic memory cell with a programmable Pi-junction, IEEE Magn. Lett., 9 (2018),
-
[8]
P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, Internal notions of a quasiparticle governing its ultrafast nonlinear response, Nature, 450 (2007), 1210–1213
-
[9]
T. Jin, H. Xia, S. Gao, Reliability analysis of the uncertain fractional-order dynamic system with state constraint, Math. Methods Appl. Sci., 45 (2022), 2615–2637
-
[10]
R. M. Kent, W. A. S. Barbosa, D. J. Gauthier, Controlling chaos using edge computing hardware, Nat. Commun., 15 (2024), 9 pages
-
[11]
E. Kurt, M. Canturk, Chaotic dynamics of resistively coupled DC- driven distinct Josephson junction and the effects of circuit parameters, Phys. D, 238 (2009), 2229–2237
-
[12]
E. Kurt, M. Canturk, Bifurcations and hyperchaos from a DC driven nonidentical Josephson junction system, Int. J. Bifurc. Chaos, 20 (2010), 3725–3740
-
[13]
Y. Li, S. Wang, N. Wang, Y. Liu, H. Xin, H. Sun, R. Zhang, Exploring the paths of energy conservation and emission reduction in aluminum industry in Henan province, China, J. Clean. Prod., 467 (2024),
-
[14]
D. Levy, Chaos theory and strategy: Theory, application, and managerial implications, Strateg. Manag. J., 15 (1994), 167–178
-
[15]
A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, R. A. Duine, New perspectives for Rashba spin-orbit coupling, Nat. Mater., 14 (2015), 871–882
-
[16]
C. M. Moehle, C. T. Ke, Q. Wang, C. Thomas, D. Xiao, S. Karwal, M. Lodari, V. van de Kerkhof, R. Termaat, G. C. Gardner, G. Scappucci, M. J. Manfra, S. Goswami, InSbAs Two-Dimensional Electron Gases as a Platform for Topological Superconductivity, Nano Lett., 21 (2021), 9990–9996
-
[17]
C. O. A. Osseni, A. V. Monwanou, Identical and reduced-order synchronization of some Josephson junction model, Eur. Phys. J. B, 95 (2022),
-
[18]
M. Sato, Y. Ando, Topological superconductors, Rep. Prog. Phys., 80 (2017), 42 pages
-
[19]
K. Srinivasan, Multiple period doubling bifurcation route to chaos in periodically pulsed Murali- Lakshmanan- Chua (MLC) circuit, Int. J. Bifurc. Chaos, 18 (2008), 541–555
-
[20]
B. Turini, S. Salimian, M. Carrega, A. Iorio, E. Strambini, F. Giazotto, V. Zannier, L. Sorba, S. Heun, Josephson diode effect in high-mobility insb nanoflags, Nano Lett., 22 (2022), 8502–8508
-
[21]
M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction, Nature, 430 (2004), 525–528
-
[22]
S. Vaitiek ˙ enas, A. M. Whiticar, M. T. Deng, F. Krizek, J. E. Sestoft, C. J. Palmstrøm, S. Marti-Sanchez, J. Arbiol, P. Krogstrup, L. Casparis, C. M. Marcus, Selective-area-grown semiconductor-superconductor hybrids: A basis for topological networks, Phys. Rev. Lett., 121 (2018),