A NOTE ON \(D_{11}\)-MODULES
-
2808
Downloads
-
4608
Views
Authors
Y. TALEBI
- Department of Mathematics, University of Mazandaran, Babolsar, Iran..
M. VEYLAKI
- Department of Mathematics, University of Mazandaran, Babolsar, Iran..
Abstract
Let \(M\) be a right R-module. \(M\) is called \(D_{11}\)-module if every
submodule of \(M\) has a supplement which is a direct summand of \(M\) and \(M\)
is called a \(D^+_{11}\)- module if every direct summand of \(M\) is a \(D_{11}\)- module. In
this paper we study some properties of \(D_{11}\) modules.
Share and Cite
ISRP Style
Y. TALEBI, M. VEYLAKI, A NOTE ON \(D_{11}\)-MODULES, Journal of Nonlinear Sciences and Applications, 1 (2008), no. 2, 87-90
AMA Style
TALEBI Y., VEYLAKI M., A NOTE ON \(D_{11}\)-MODULES. J. Nonlinear Sci. Appl. (2008); 1(2):87-90
Chicago/Turabian Style
TALEBI , Y., VEYLAKI, M.. "A NOTE ON \(D_{11}\)-MODULES." Journal of Nonlinear Sciences and Applications, 1, no. 2 (2008): 87-90
Keywords
- \(D_{11}\)- module
- \(D^+_{11}\)- module
MSC
References
-
[1]
F. W. Anderson, K. R. Fuller, Rings and categories of modules, Berlin, Springer- verlag, New York (1992)
-
[2]
G. F. Birkenmeier, A. Tercan , When some complement of a submodule is a summand , Comm. Algebra , 35 (2007), 597-611
-
[3]
A. Ozcan, Harmanic Duo modules , Glasgow Math. J., 48(3) (2006), 535-545
-
[4]
Y. Talebi, N. Vanaja, The Torsion theory cogenerated by M-small modules, Comm.Algebra , 30(3) (2002), 1449-1460
-
[5]
Y. Wang , A Note on modules with (\(D^+_{ 11}\)), Southeast Asian Bulletin of Mathematics , 28 (2004), 999-1002
-
[6]
R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia (1991)