\(S^{JS}\)-metric spaces: a survey
Authors
I. Beg
- Department of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan.
K. Roy
- Department of Mathematics, Supreme Knowledge Foundation Group of Institutions, Chandannagar, Hooghly-712139, West Bengal, India.
M. Saha
- Department of Mathematics, The University of Burdwan, Purba Bardhaman-713104, West Bengal, India.
Abstract
The aim of this survey article, is to present in one place the recently
published results on \(S^{JS}\)-metric spaces, their generalizations and
applications. We start with \(S^{JS}\)-metric spaces and study their
properties. Then we deal with abstract \(S^{JS}\)-topological spaces induced
by \(S^{JS}\)-metric and present several classical results including Cantor's
intersection theorem. Next the notion of sequentially compactness on \(S^{JS}\)-metric spaces and properties of sequentially compact \(S^{JS}\)-metric
spaces are studied. Some fixed point theorems are obtained for integral type
contractive mappings. Finally we prove several new results on fixed point
for rational type contractive mappings, obtain Ekeland's variational
principle on \(S^{JS}\)-metric spaces as an application and in the end also
present results regarding best \(S^{JS}\)-proximity point with application.
Share and Cite
ISRP Style
I. Beg, K. Roy, M. Saha, \(S^{JS}\)-metric spaces: a survey, Journal of Nonlinear Sciences and Applications, 17 (2024), no. 1, 30--69
AMA Style
Beg I., Roy K., Saha M., \(S^{JS}\)-metric spaces: a survey. J. Nonlinear Sci. Appl. (2024); 17(1):30--69
Chicago/Turabian Style
Beg, I., Roy, K., Saha, M.. "\(S^{JS}\)-metric spaces: a survey." Journal of Nonlinear Sciences and Applications, 17, no. 1 (2024): 30--69
Keywords
- \(S^{JS}\)-metric space
- \(S^{JS}\)-topological space
- \(S_{b} \)-metric space
- generalized metric
- Cantor's intersection property
- Ekeland's variational principle
- contractive type mapping
- \(\mathcal{Z}\)-type contractive map
- rational type contractive map
- fixed point
- \(S^{JS}\)-proximity point
MSC
- 54E35
- 54E45
- 54A05
- 47H10
- 54D30
- 54H25
- 46S99
References
-
[1]
R. P. Agarwal, D. O’Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl., 248 (2000), 402–414
-
[2]
S. S. Basha, Best proximity points: Global optimal approximate solution, J. Global Optim., 46 (2011), 15–21
-
[3]
S. Basha, Proximity point theorems generalizing the contraction principle, Nonlinear Anal., 74 (2011), 5844–5850
-
[4]
I. Beg, M. Abbas, T. Nazir, Generalized cone metric spaces, J. Nonlinear Sci. Appl., 3 (2010), 21–31
-
[5]
I. Beg, A. Bartwal, S. Rawat, R. C. Dimri, Best proximity points in noncommutative Banach spaces, Comput. Appl. Math., 41 (2022), 11 pages
-
[6]
I. Beg, K. Roy, M. Saha, SJS-metric and topological spaces, J. Math. Ext., 15 (2021), 1–16
-
[7]
I. Beg, K. Roy, M. Saha, Ekeland’s variational principle in SJS-metric spaces, Facta Univ. Ser. Math. Inform., 36 (2021), 1117–1127
-
[8]
I. Beg, K. Roy, M. Saha, Best SJS-proximity point on an ordered sequential SJS-metric space with an application to variational inequality problem, Discuss. Math. Differ. Incl. Control Optim., 42 (2022), 171–187
-
[9]
J. M. Borwein, Q. J. Zhu, Techniques of Variational Analysis, Springer-Verlag, New York (2005)
-
[10]
M. Bota, A. Molnar, C. Varga, On Ekeland’s variation principle in b-metric spaces, Fixed Point Theory, 12 (2011), 21–28
-
[11]
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37
-
[12]
A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536
-
[13]
M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Amer. Math. Monthly, 116 (2009), 708–718
-
[14]
J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251
-
[15]
A. Chanda, L. K. Dey, S. Radenivi´, Simulation functions: a survey of recent results, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), 2923–2952
-
[16]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11
-
[17]
P. Dan, M. Saha, Proximity points for a class of generalized proximal contractive mapping, Int. J. Math. Arch., 5 (2014), 166–176
-
[18]
D. Dey, P. Dan, M. Saha, Best proximity points for '-contractions and weak '-contractions, Southeast Asian Bull. Math., 40 (2016), 467–477
-
[19]
D. Dey, A. K. Laha, M. Saha, Approximate coincidence point of two nonlinear mappings, J. Math., 2013 (2013), 4 pages
-
[20]
B. C. Dhage, Generalized metric spaces and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329–336
-
[21]
T. Doˇsenovi´c, S. Radenovi´c, S. Sedghi, Generalized metric spaces: Survey, TWMS J. Pure Appl. Math., 9 (2018), 3–17
-
[22]
M. Edelstein, On fixed points and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74–79
-
[23]
I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353
-
[24]
K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240
-
[25]
A. P. Farajzadeh, S Plubtieng, A. Hoseinpour, A generalization of Ekeland’s variational principle by using the -distance with its applications, J. Inequal. Appl., 2017 (2017), 7 pages
-
[26]
A. D. Filip, Coupled fixed points for Hardy-Rogerstype operators in ordered generalized Kasahara spaces, Appl. Anal. Optim., 3 (2019), 29–42
-
[27]
M. Fr´echet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo, 22 (1906), 1–72
-
[28]
S. G¨ahler, 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148
-
[29]
M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608
-
[30]
F. Gu, W. Shatanawi, Some new results on common coupled fixed points of two hybrid pair of mappings in partial metric spaces, J. Nonlinear Funct. Anal., 2019 (2019),
-
[31]
D. J. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632
-
[32]
E. Hashemi, R. Saadati, Ekeland’s variational principle and minimization Takahashi’s theorem in generalized metric spaces, Mathematics, 6 (2018), 14 pages
-
[33]
P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7
-
[34]
L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476
-
[35]
H. Is¸ık, M. S. Sezen, C. Vetro, '-best proximity point theorems and applications to variational inequality problems, J. Fixed Point Theory Appl., 19 (2017), 3177–3189
-
[36]
S. Jankovi´c, Z. Kadelburg, S. Radenovi´c, On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601
-
[37]
M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 14 pages
-
[38]
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261–263
-
[39]
E. Karapinar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2018), 7 pages
-
[40]
O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215–229
-
[41]
J. L. Kelley, General topology, D. Van Nostrand Co., Toronto-New York-London (1955)
-
[42]
M. S. Khan, M. Berzig, S. Chandok, Fixed point theorems in bimetric space endowed with binary relation and applications, Miskolc Math. Notes, 16 (2015), 939–951
-
[43]
F. Khojasteh, S. Shukla, S. Radenovi´c, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194
-
[44]
W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, Cham (2014)
-
[45]
W. M. Kozlowski, Modular function spaces, Marcel Dekker, New York (1988)
-
[46]
M. Maia, Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova, 40 (1968), 139–143
-
[47]
Ekeland Variational Principle, I. Meghea, Old City Publishing, Philadelphia, PA; ´ Editions des Archives Contemporaires, Paris (2009)
-
[48]
H. Mehravaran, M. Khanehgir, R. Allahyari, Fixed point theorems for F-Contractions in dislocated Sb-metric spaces, Int. J. Anal. Appl., 17 (2019), 734–751
-
[49]
K. Menger, Probabilistic theories of relations, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 178–180
-
[50]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297
-
[51]
Y. Rohen, T. Doˇsenovi´c, S. Radenovi´c,, A note on the paper “A fixed point theorems in Sb-metric spaces”, Filomat, 31 (2017), 3335–3346
-
[52]
K. Roy, I. Beg, M. Saha, Sequentially compact SJS-metric spaces, Commun. Optim. Theory, 2020 (2020), 1–7
-
[53]
K. Roy, M. Saha, I. Beg, Fixed point of generalized contractive mappings on SJS-metric spaces with two metrics, Theory Approx. Appl., 14 (2020), 14 pages
-
[54]
K. Roy, M. Saha, I. Beg, Fixed point of contractive mappings of integral type over an SJS-metric space, Tamkang J. Math., 52 (2021), 267–280
-
[55]
I. A. Rus, A. S. Muresan, V. Muresan, Weakly Picard operations on a set with two metrics, Fixed Point Theory, 6 (2005), 323–331
-
[56]
M. Saha, D. Dey, Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl., 5 (2012), 84–92
-
[57]
B. Samet, Fixed point results for implicit contractions on spaces with two metrics, J. Inequal. Appl., 2014 (2014), 9 pages
-
[58]
S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), 258–266
-
[59]
V. M. Sehgal, On fixed and periodic points of a class of mappings, J. London Math. Soc. (2), 5 (1972), 571–576
-
[60]
T. Senapati, L. K. Dey, A new approach of couple fixed point results on JS- metric spaces, arXiv preprint arXiv:1606.05970, (2016), 17 pages
-
[61]
G. K. Soni, Fixed point theorem for mappings in bimetric space, Res. J. Math. Stat. Sci., 3 (2015), 13–14
-
[62]
N. Souayah, N. Mlaiki, A fixed point theorem in Sb-metric spaces, J. Math. Comput. Sci., 16 (2016), 131–139
-
[63]
H.-C. Wu, Coincidence point and common fixed point theorems in the product spaces of quasi-ordered metric spaces, J. Nonlinear Var. Anal., 1 (2017), 175–199