Auto-oscillation of a generalized Gause type model with a convex contraint
Authors
G. A. Degla
- Institut of Mathematics and Physical Sciences (IMSP), University of Abomey Calavi, BP 613 Porto-Novo, Benin Republic.
S. J. Degbo
- Institut of Mathematics and Physical Sciences (IMSP), University of Abomey Calavi, BP 613 Porto-Novo, Benin Republic.
M. Dossou-Yovo
- Institut of Mathematics and Physical Sciences (IMSP), University of Abomey Calavi, BP 613 Porto-Novo, Benin Republic.
Abstract
In this paper, we study the generalized Gause model in which the functional and numerical responses of the predators need not be monotonic functions and the intrinsic mortality rate of the predators is a variable function. As a result, we have established sufficient conditions for the existence, uniqueness and global stability of limit cycles confined in a closed convex nonempty set, by relying on a recent Lobanova and Sadovskii theorem. Moreover, we prove sufficient conditions for the existence of Hopf bifurcation. Eventually using scilab, we illustrate the validity of the results with numerical simulations.
Share and Cite
ISRP Style
G. A. Degla, S. J. Degbo, M. Dossou-Yovo, Auto-oscillation of a generalized Gause type model with a convex contraint, Journal of Nonlinear Sciences and Applications, 16 (2023), no. 1, 60--78
AMA Style
Degla G. A., Degbo S. J., Dossou-Yovo M., Auto-oscillation of a generalized Gause type model with a convex contraint. J. Nonlinear Sci. Appl. (2023); 16(1):60--78
Chicago/Turabian Style
Degla, G. A., Degbo, S. J., Dossou-Yovo, M.. "Auto-oscillation of a generalized Gause type model with a convex contraint." Journal of Nonlinear Sciences and Applications, 16, no. 1 (2023): 60--78
Keywords
- Generalized Gause model
- nonmonotonic numerical responses
- nonconstant death rate
- convex constraint
- global stability
- limit cycle
- Hopf bifurcation
- first Lyapunov number
MSC
References
-
[1]
J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707–723
-
[2]
J. Appell, N. Merentez, J. L. S´anchez Hern´andez, Locally Lipschitz composition operators in spaces of functions of bounded variation, Annali di Matematica, 190 (2011), 33–43
-
[3]
B. Boon, H. Landelout, Kinetics of nitrite oxidation by nitrobacter winogradski, Biochem. J., 85 (1962), 440–447
-
[4]
M. Cavani, M. Farkas, Bifurcations in a predator-prey model with memory and diffusion, I: Andronov-Hopf bifurcation, Acta Math. Hung., 63 (1994), 213–229
-
[5]
K. S. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541–548.
-
[6]
C. Dai, H. Liu, Z. Jin, Q. Guo, Y. Wang, H. Yu, et al., Dynamic analysis of a heterogeneous diffusive prey-predator system in time-periodic environment, Complexity, (2020), 1–13
-
[7]
C. Duque, M. Lizana, Partial characterization of the global dynamic of a predator-prey model with non constant mortality rate, Differ. Equations Dyn. Syst., 17 (2009), 63–75
-
[8]
C. Duque, M. Lizana, On the dynamics of a predator-prey model with nonconstant death rate and diffusion, Nonlinear Anal.: Real World Appl., 12 (2011), 2198–2210
-
[9]
V. H. Edwards, Influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng, 12 (1970), 679–712
-
[10]
H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York (1980)
-
[11]
Oscillations en biologie Analyse qualitative et mod`eles, J. Francoise, Springer-Verlag, Berlin Heidelberg (2005)
-
[12]
Global Bifurcation theory and Hilbert´s sixteenth problem, V. A. Gaiko, Kluwer Academic Publishers, USA (2003)
-
[13]
K. Hasik, Uniqueness of limit cycle in predator-prey system with symmetric prey isocline, Math. Biosci., 164 (2000), 203– 215
-
[14]
W. T. Hwang, Uniqueness of the Limit Cycle for Gause-Type Predator-Prey Systems, J. Math. Anal. Appl., 238 (1999), 179–195
-
[15]
X. C. Huang, S. Merrill, Condition for uniqueness of limit cycles in general predator-prey system, Math. Biosci., 96 (1989), 47–60
-
[16]
Y. Kuang, H. I. Freedman, Uniqueness of the limit cycles in Gauss-type models of predator-prey systems, Maths Biosci., 88 (1988), 67–84
-
[17]
O. A. Lobanova, B. N. Sadovskii, On two-dimensional dynamical systems with constraint, Differential Equations, 43 (2007), 460–468
-
[18]
L. P. Liou, K. S. Cheng, On the uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 19 (1988), 867–878
-
[19]
L. Perko, Differential equations and dynamical systems, Springer, New York (1996)
-
[20]
W. Sokol, J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1981), 2039–2049
-
[21]
G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., 48 (1988), 592–606
-
[22]
R. Yang, Hopf bifurcation analysis of a delayed diffusive predator-prey system with nonconstant death rate, Chaos Solitons Fractals, 81 (2015), 224–232
-
[23]
R. D. Yang, A. E. Humphrey, Dynamics and steady state studies of phenol biodegeneration in pure and mixed cultures, Biotechnol. Bioeng., 17 (1975), 1211–1235
-
[24]
W. S. Yang, Dynamics of a diffusive predator-prey model with general nonlinear functional response, Sci. World J., (2014), 1–10