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Abstract

The purpose of this paper is to introduce the difference sequence space ces(BY, F, q) using sequence of modulus function
F = (f;). We examine some topological properties of the space and also obtain some inclusion relations.
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1. Introduction and preliminaries

Let w, 0 denote the spaces of all scalar and real sequences, respectively. For 1 < p < oo, the cesaro
sequence space cesp defined by

cesp = {x el i (1 i |Xk|>p < oo},
=1 Vs

is a Banach space when equipped with the norm

00 1 & py L
x|l = =) ) )"
(5 (L5 m))
This space was introduced by Shiue [30], which is useful in the theory of matrix operator. Some geometric
properties of the cesaro sequence space ces, were studied by many authors such as Lee [13], Leibowitz
[14], Lui et. al [15], Sanhan et. al [25] and Tripathy et. al [33] and references therein. Modulus function
has been discussed in [22, 23, 26-29] and references therein.
Ruckle [24] used the idea of a modulus function f to construct a class of FK spaces

L(f) = {x = (i) : ) flxid) < o0}

k=1
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The space L(f) is closely related to the space {; which is an L(f) space with f(x) = x for all real x > 0.
For any set E of sequences, the space of multipliers of E, denoted by M(E), is given by

M(E)={aew:ax€E, forall x € E}.

The notion of the difference sequence space was introduced by Kizmaz [12]. It was further generalized
by Et and Colak [11] as follows

Z(AY) ={x = (xi) € w: (AFx) € 2},
for z =y, c and c,, where p is a non-negative integer and
AMx = AR Iy — Au71Xk+1, A°x =xx, VkeN,

or equivalent to the following binomial representation

u
At =Y (=1)Y (5) Xaeqv-

v=0

These sequence spaces were generalized by Et and Basasir [10] taking z = {s(p), c(p) and co(p).
Dutta [3] introduced the following difference sequence spaces using a new difference operator:

Z(Ag)) ={x=(x) e w:Ay)x €z}, forz=1Iy,candco,

where A)x = (Aq)xx) = (X —Xk—q) for all k,n € IN.

In [4], Dutta introduced the sequence spaces &(|.,.[l, Af ), p), &([l.,.[l, A

(n)/p)/ eOO(H/'H/ Aﬁ])/p)/
m(|.,.[, Af,), ) and mo(||.,.[l, Afy,p), wheren, n € Nand Al xi = (A xk) = (At:)lxk —A&jlxk_n),
and A?n)xk = xy, for all k,1 € IN, which is equivalent to the following binomial representation:

08
Al ac= D (=1)Y ($) i v

v=0

The difference sequence space have been studied by authors [5-9, 18-21, 23, 31, 32, 35] and references
therein. Basar and Altay [1] introduced the generalized difference matrix B = (byi) for all k, m € IN,
which is a generalization of A(;)-difference operator, by

T, k=m,
bk =<s, k=m-—1,
0, (k>m)or 0<k<m—1).
Basarir and Kayikgi [2] defined the matrix B* (b’ , ) which reduced the difference matrix A(”U incase r =
1, s = —1. The generalized B"-difference operator is equivalent to the following binomial representation:

08
Bfx=BM(xc) = ) (§) Vs N,
v=0

Let F = (fi) be a sequence of modulus functions, q = (qn) be a bounded sequence of strictly positive real
numbers, then we define the cesaro sequence space as follows

ces(BY,F, q) = {x Ew: i [fi (% i IB‘/*\XiD} dn < oo}.
n=1 i=1
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Taking modulus function F¥ instead of F in the space ces(BﬁL\,F, q), we can define the composite space
ces(BY%,F, q) as follow

ces(Bly, P, q) = {x cw: 3 [(E 3 Bixl)] ™ < o).
n=1 i=1

The following inequality will be used throughout the paper. If 0 < p; < supp; = H, K = max(1,2"71),
then
lai + bi[Pt < K{lay[P* + (b7, (1.1)

for all i and aj, b; € C. Also |a/P* < max(1,|a|™) for all a € C.
We examine some topological properties of the space ces(B'\,F,q) and also obtain some inclusion
relations.

2. Topological properties

Theorem 2.1. Let F = (f3) be a sequence of modulus function and q = (qn ) be a bounded sequence of positive real
numbers. Then ces(B'\, F, q) is a linear space over the field of complex number C.

Proof. Let x,y € ces(B/*{, F,q) and «, 3 € C. Then there exist positive number My and Ng such that
la|] < My and 3| < Ng. From condition (ii) and (iii) of definition of modulus function and by using
inequality (1.1), we have

5 (3 o+ Byol)] " < max(1,21) (max(t, ME) Y [ (2 3 Bkl)]

n=1 i=1 n=1 i=1
cmax(LNE) Y Y [ (2 Zml)] ).

This implies that oox + fy € ces(B/*{, F,q). This proves that ces(BﬁL\, F, q) is a linear space. This completes
the proof of the theorem. O

Theorem 2.2. Let F = (f) be a sequence of modulus function and q = (qn) be a bounded sequence of positive real
numbers, ces(BY% ,F, q) is a topological linear space, paranormed by

- (X [

n=1 =

1

where H = sup qn < oo and K = max(1, H).

Proof. Clearly g(x) = g(—x). It is trivial B x; = 0 for x = 0. Since f;(0) = 0, we get g(x) = 0 for x = 0.
Since £ < 1, Using the Minkowski’s inequality, we have

(3 (Bl )] ™)
(
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Hence g(x) is subadditive. For the continuity of multiplication, let us take any complex number x. By
definition, we have

1

o= (5 12 5 mtena)] )

< CEglx),

where C is a positive integer such that || < C,. Now, let « — 0 for any fixed x with g(x) # 0. By
definition for |«| < 1, we have

i [f ( Z\OCB XJ)] <€, for n>mngle). (2.1)

n=1
Also, for 1 < n < ny, taking « small enough, since F = (f;) is continuous, we have
o0 1 o0 " qn
Z [fi (E Z |OLBAX1‘>] < €. (22)
n=1 i=1
Now, (2.1) and (2.2) together imply that g(ax) — 0 as « — 0. This completes the proof of the theorem. [

Theorem 2.3. Let F = (f) be a sequence of modulus function and q = (qn) be a bounded sequence of positive real
numbers, ces(BY ,F, q) is a complete paranormed space with paranorm defined by

- (3 [y 2 ma) ™)
n=1 i=1
where H = sup qn < oo and K = max(1, H).

Proof. In view of Theorem 2.2 it suffices to prove the completeness of ces(BﬁL\, F,q). Let (x(s)) be a Cauchy
sequence in ces(B%,F, q). Then g(x{*) —x(!)) — 0 as t — oo, that is

ad 1 ad qn
>[5 X BR —x{M)] T =0, as st oo, 2.3)
n=1 i=1
which implies that for each 1, ng — x | — 0 ass,t — oo and so (ng)) is a Cauchy sequence in C for

each fixed i. Since C is complete, as s — oo, XE )

there exists a natural number N such that

Z[ ( ZIB” F )] <X, for s >N, (2.4)

n=1

— x4, for each i. Now from (2.3), we have that for € > 0,

Since for any fixed natural number M, we have from (2.4)

i 1 ¢ (s) ()19

s t n K
§1[f1(n > A ] < ek, for s>,
n= 1=

by taking t — oo in the above expression we obtain

M
(s) an K
nzl[ ( ZIB“ xllﬂ < e, for s> N.
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Since M is arbitrary, by taking M — oo, we obtain

0]

il {ﬂ(i; BA(x —Xi)N M<K for s> N,

n= 1=

ie., g(x* —x) < e for s > N. To show that x € ces(B/*{, F,q), let t > M and fix ng. Since % <land K >1,
using Minkowski’s inequality and the definition of modulus function, we have

Mo 1 00 n 1 o 1 0 qn 1
(3 [R(G X maea)] ™) = (X [r(g 2 mhtse s 4)]™)*
n=1 i=1 n=1 i=1
< (X[ (G Z e )+ 6 )] ™)
nn:Ol ) 10:01 N | i=1
< (2[5 2w )
”:no 112(1’o any ¥
([ G 2] ")
n=1 i=1
<e+g(x®)
q

It follows that } 77, [f1<% ) IBf\xilﬂ " converges, so that x = (x;) € ces(B%,F,q) and the space is
complete. This completes the proof of the theorem. O

3. Inclusion relations

Theorem 3.1. If q = (qn ) and p = (pn) are bounded sequences of positive real numbers with 0 < qn < pn < 00,
for each n and F = (f) be a sequence of modulus function, then ces(BﬁL\, F,q) C ces(B;L\, F,p).

Proof. Let x € ces(BY,F,q). Then

o]

1 = qn
[fi (E Zl |B;L\Xi|)] < oQ.
i—

n=1 i=

This implies that f; (% . IBﬁL\xil) < 1 for sufficiently large values of n, say n > ng for some fixed
np € N. Since F = (f}) is increasing and q» < pn, we have

(o.¢] (o.¢]

5 [z mae)]™ < 3 [R(3 2 min)] " <o

n=>ny nzng
which implies that x € ces(B'\,F, p) and this completes the proof of the theorem. O

Theorem 3.2. If u = (uy,) and v = (vy) are bounded sequences of positive real numbers with 0 < Upn,vn < 00,
and qn = min(un,vn ), then

ces(BY%,F,q) = ces(BY%,F,u) Nces(B'y,F,v).
Proof. 1t follows from Theorem 3.1 that

ces(BY%,F, q) C ces(B\,F,u) Nnces(BY,F,v).
For any complex number A, [A[9" < max(|A[Y, [A[Y™), thus

ces(BY%,F,u)nces(B%\,F,v) C ces(BY\,F, q),

and the proof of the theorem is complete. O
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Theorem 3.3. If H = sup px < oo and F = (f;) be a sequence of modulus function, then {s, C M(ces(BY%,F, q)).
Proof. a € s implies |ai| < 1+ [i] for some i > 0 and all i. Hence, x € ces(BﬁL\, F, q) implies

> (2 X lawd)] " < 3 (23 Bal)] "
1 i=1 n=1 i=1

n= 1=

which gives o, C M(ces(B!y,F, q)). This completes the proof of the theorem. O
Theorem 3.4. For any sequence of modulus function F = (f;) and v € N,

(i) ces(BR,F¥,q) C ces(BY, q), if limi oo ' = B > 0.

(ii) ces(B!\,q) C ces(BY, ", q), if there exists a positive constants « such that f(t) < at, forall t >0

Proof. (i) By Maddox [12, Proposition 1], we have
flt) . rflt).
B = lim — mf{T.t>0},

t—o0

so that 0 < 3 < f(1). Let p > 0, by definition of 3, we have 3t < f(t),Vt > 0. Since F = (f}) is increasing
we have B2t < f2(t). So by induction we have BVt < fV(t). Let x € ces(FY, q,B!\), Using inequality
IAl9% < max(1, [AI"), we have
( Z Bixd) "< Y [p (s 3 B x1|)]
n=1 n=1 i=1
> qn
<max1[3"HZ{ ( Xi|>} ,
n=1 i=1

and hence x € ces(BY, q).
(i) Since f;(t) < ot, for all t > 0 and F = (f}) is an increasing function, we have f}(t) < «Vt for each
veNN. Letx € ces(Bf\, q). Using inequality |A|9% < max(1, IAIH), we have

Z [ ( Z|B x1|>] " < max(1, oM Z <i§|8ixi|)qn

n=1

and hence x € ces(BY%,F, q). O

Theorem 3.5. Let m,v € IN be such that m < v. If there exists a positive constant « such that f(t) < «t for all
t >0, then
ces(BY, q) C ces(B%y,F™, q) C ces(B%\,F¥,q).

Proof. Let r = v—m. Since fi(t) < «t, we have f¥(t) < M™f*(t) < MVt, where M = 1+ [af. Let
x € ces(BY, q), we have

ME IS MU EP LI
>

n=1 i=1
) 1 n q
<MMY (S Y BRal)
i=1

and the required inclusion follows. This completes the proof. O
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