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Abstract
In this paper, we consider a certain type of nonlinear functions acting on a finite-dimensional vector space Hn over the

ring H of all quaternions, for n ∈ N. Our main results show that: (i) every quaternion q ∈H is classified by its spectrum of
the realization under a canonical representation on C2; (ii) each vector of Hn is classified by Cn in an extended set-up of (i);
and (iii) the (usual linear) spectral analysis on the matricial ring Mn (C) of all (n×n)-matrices (over C) affects some fixed point
theorems for our nonlinear functions on Hn. In conclusion, we study the connections between the “linear” spectral theory over
the complex numbers C, and fixed point theorems for “nonlinear” functions over H.
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1. Introduction

In this paper, we consider finite-dimensional vector spaces Hn over the ring H of the quaternions, for
n ∈N. In particular, we are interested in certain nonlinear functions acting on Hn. Let

C = {x+ yi : x, y ∈ R, and i =
√
−1}

be the set of all complex numbers, where R denotes the real numbers. Then the set,

H =

x+ yi+ uj+ vk
∣∣∣∣∣∣

x, y, u, v ∈ R

i2 = j2 = k2 = −1,
and ijk = −1

 ,

of all quaternions (or quaternion numbers) is defined.
A representation of [19] lets us understand every quaternion q ∈ H as a matrix [q] ∈ M2(C) on the

2-dimensional complex vector space C2 = C×C. For instance,

[i] =

(
i 0
0 −i

)
, [j] =

(
0 −1
1 0

)
, and [k] =

(
0 −i
−i 0

)
,

in M2 (C). The spectral properties of [q] ∈ M2(C) is considered in [1]. And, by using the main results of
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[1], we formularized the solutions of monomial equations, and characterize how to solve some quadratic
equations on H, in [2]. For the self-contained-ness of the paper, we briefly introduce the main concepts
and results of these preprints [1, 2] in Sections 2, 3, and 4.

1.1. Motivation

The quaternions H is an important object not only in mathematics (e.g., [1, 2, 9, 10, 17]), but also in
scientific fields (e.g., [3, 13]). Algebra on H is considered in e.g., [20]; analysis on H is studied in e.g.,
[11, 18]; and physics on H is investigated-and-applied in e.g., [6]. Also, the matrices over the quaternions
H, and the corresponding quaternionic-eigenvalue problems have been studied in linear, or multi-linear
analysis (e.g., see [4, 5, 12, 14–16, 18]).

We here emphasize that, even though our works are motivated by the recent studies, the purposes,
approaches, results and applications are different from the earlier works. In this paper, we study finite-
dimensional vector spaces Hn over the quaternions H, for n ∈N, and certain types of nonlinear functions
on Hn. Our results may/can be applicable to geometry on H.

1.2. Overview

In Sections 2 and 3, the spectral analysis of the realizations of quaternions is re-considered (also, see
[1, 2]). And, in Section 4, we classify the quaternions H by their representatives, the complex numbers C

by the spectral properties of Sections 2 and 3.
In Section 5, finite-dimensional vector spaces Hn are constructed-and-studied over H, for n ∈ N.

The vectors of Hn are classified by their representatives, the complex vectors of Cn under our spectral
classifications of Section 4. In Sections 6 and 7, we study nonlinear functions acting on Hn, and consider a
certain type of them. By collecting these nonlinear functions, we construct an algebraic structure

∑
n(H)

of such nonlinear functions, and it is shown that
∑
n (H) forms a noncommutative ring over the real

numbers R. Basic functional properties of the ring-elements of
∑
n (H) are considered there.

By using the results of Sections 5, 6, and 7, the relations between the usual spectral theory on the
matricial ring Mn (C) and basic fixed-point theorems on

∑
n (H) are studied in Section 8. The results of

Section 8 provide connections between “linear” analysis on Cn and “nonlinear” analysis on Hn via the
spectral classification on the quaternions H.

2. A representation
(
C2, π

)
of H

In this section, we review a representation of the quaternions H. In particular, we understand each
quaternion q ∈H as a (2×2)-matrix [q] ∈M2(C) acting on the 2-dimensional space C2 (e.g., see [1, 16, 20]).

2.1. Quaternions H

Let a and b be complex numbers,

a = x+ yi and b = u+ vi in C,

where x, y, u, v ∈ R, and i =
√
−1 in C. For the complex numbers a, b ∈ C, the corresponding quaternion

q ∈H is defined by

q = a+ bj = (x+ yi) + (u+ vi)j = x+ yi+ uj+ vij = x+ yi+ uj+ vk, (2.1)

in H,
i2 = j2 = k2 = ijk = −1.

The quaternions H has a well-defined addition (+), and multiplication (·); for any

ql = al + blj ∈H, with al,bl ∈ C,
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in the sense of (2.1) for l = 1, 2, one has

q1 + q2 = (a1 + a2) + (b1 + b2)j, q1q2 = (a1a2 − b1b2) + (a1b2 + a2b1)j, (2.2)

in H, where z are the conjugates of z ∈ C. By (2.2),

q1q2 6= q2q1 in H, in general.

Under the operations of (2.2), the quaternions H form a ring algebraically, moreover it is a “noncommu-
tative field” (in the sense of [20]). A noncommutative field (F, +, ·) is an algebraic structure satisfying that:
the algebraic pair (F, +) forms an abelian group; and the pair (F×, ·) forms a “noncommutative” group,
where F× = F \ {0F}, where 0F is the (+)-identity of (F, +); and (+) and (·) are left-and-right distributive.

If q ∈H is a quaternion (2.1), then one can define the quaternion-conjugate q ∈H by

q = x− yi− ui− vi. (2.3)

So, one has that

qq = qq = |a|2 + |b|2 = x2 + y2 + u2 + v2, (2.4)

by (2.3). Thus, by (2.4),

qq = qq > 0 in R ⊂H, ∀q ∈H. (2.5)

By (2.5), one can define the quaternion-modulus ‖.‖ on H by

‖q‖ =
√
qq, for all q ∈H. (2.6)

This quaternion-modulus ‖.‖ of (2.6) is a well-defined norm on H. If q 6= 0 in H, then the quaternion-
reciprocal q−1 of q,

q−1 =

(
a

|a|2 + |b|2

)
+

(
−b

|a|2 + |b|2

)
j

is well-defined in H, by (2.4) and (2.6).

2.2. A Representation
(
C2, π

)
of H

In this section, we consider a representation of the quaternions H, introduced in [20], realized on the
2-dimensional space C2 over the complex numbers C. As in (2.1), let’s understand each quaternion q ∈H

as
q = a+ bj in H, with a,∈ C,

where
a = x+ yi, and b = u+ vi in C.

Define an injective representation, π : H→M2(C), by

π(q) = π (a+ bj) =

(
a −b

b a

)
, (2.7)

where a = x− yi and b = u− vi are the complex-conjugates of a and b in C, respectively, and M2(C) is
the matricial ring of all (2× 2)-matrices over C. This morphism π of (2.7) satisfies that

π (q1 + q2) = π(q1) + π(q2), and π (q1q2) = π(q1)π(q2), (2.8)

for all q1, q2 ∈H, by (2.8). Then the quaternion-conjugate q of q ∈H satisfies that

π (q) = π (a− bj) =

(
a b

−b a

)
=

(
a −b

b a

)∗
= π(q)∗, (2.9)

in M2(C) by (2.10), where A∗ are the adjoints (or, the conjugate-transposes) of A ∈M2(C). Furthermore,
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det (π(q)) = det
(
a −b

b a

)
= |a|2 + |b|2 ,

and hence, one can have

‖q‖ =
√

det (π(q)), for all q ∈H, (2.10)

by (2.12) and (2.13).

Proposition 2.1. Let π be in the sense of (2.7). Then(
C2, π

)
is a topological representation of H. (2.11)

Proof. The morphism π of (2.7) is a well-defined injective ring-homomorphism from H into M2(C), by
(2.8) and (2.9). Moreover, the relation (2.10) shows that the usual topology for H, determined by the
quaternion-modulus |.| is preserved by the norm ‖.‖ on M2 (C), and hence, this representation is topolog-
ical.

Notation: Let q ∈H, and π(q), the realization of q in M2(C). For convenience, we denote π(q) by [q].
Let’s define a subset H2 of M2(C) by the set of all realizations of H, i.e.,

H2
def
= {[q] ∈M2(C) : q ∈H} = π (H) . (2.12)

Theorem 2.2. The quaternions H and the set H2 of (2.12) are isomorphic noncommutative fields, i.e.,

H
NF
= H2, (2.13)

where “NF
=” means “being noncommutative-field-isomorphic.”

Proof. Take the action π of (2.7) acting on C2. By the injectivity of π, and by the definition (2.12), two
sets H and H2 are bijective (or equipotent), i.e., π : H → H2 is a bijection. Moreover, π is a well-defined
topological-ring-homomorphism from H onto H2 by (2.11), i.e., π is a continuous ring-isomorphism from
H onto H2. Thus the relation (2.13) holds.

3. Spectral analysis on H

Let H2 be the noncommutative field (2.12), isomorphic to the quaternions H. In this section, we regard
each quaternion q ∈H as a (2× 2)-matrix [q] ∈ H2 in M2 (C) by (2.13), and study spectral analysis on H2
(and hence, that on H).

3.1. Quaternion-spectral forms of H

In this section, we consider the spectra spec ([q]) of the realizations [q] ∈ H2 of quaternions q ∈ H

canonically, by regarding [q] as the usual (2× 2)-matrices of M2 (C). Let q = a+ bj ∈ H be a quaternion
with

a = x+ yi, b = u+ vi ∈ C,

and

[q] =

(
a −b
b a

)
=

(
x+ yi −u− vi
u− vi x− yi

)
∈ H2, (3.1)

the realization of q. The realization [q] ∈ H2 ⊂M2 (C) of (3.1) has its characteristic polynomial,

def ([q] − zI2) ∈ C[z],
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in the polynomial ring C[z] in a variable z ∈ C, and the corresponding equation,

det ([q] − zI2) = 0 ⇐⇒ z2 − 2xz+
(
x2 + y2 + u2 + v2) = 0,

has its solutions,

z = x± i
√
y2 + u2 + v2 in C. (3.2)

(See [1, 2] for details).

Theorem 3.1. Let q = a+ bj ∈H be a quaternion, realized to be [q] ∈ H2. Then the spectrum spec ([q]) of [q] is
the subset,

spec ([q]) =
{
λ, λ
}

of C,

where

λ = x+ i
√
y2 + u2 + v2 in C. (3.3)

Proof. The spectrum (3.3) is obtained by (3.2).

Motivated by (3.3), we define the following concept.

Definition 3.2. Let q = x+ yi+ uj+ vk ∈H be a quaternion, realized to be [q] ∈ H2. If u = 0 = v in R,
equivalently, if q = x+ yi+ 0j+ 0k in H, equivalently, if q ∈ C ⊂H, then the matrix,

q denote
=

(
x+ yi 0

0 x− yi

)
=

(
q 0
0 q

)
= [q] ∈ H2

is called the quaternion-spectral form (in short, the q-spectral form) of q. Meanwhile, if either u 6= 0, or
v 6= 0 in R, equivalently, if q ∈ (H \ C) ⊂H, then the matrix,

q denote
=

(
λ 0
0 λ

)
∈ H2,

with
λ = x+ i

√
y2 + u2 + v2 ∈ C,

is called the quaternion-spectral form (in short, the q-spectral form) of q.

By definition, the q-spectral form q ∈ H2 of a quaternion q ∈H is the diagonal matrix of M2 (C)

whose diagonal entries are the eigenvalues of the realization [q] ∈ H2, which is “contained in H2,” by
(3.3). Note that if q = x+ yi+ 0j+ 0k ∈ C in H, then the realization [q] ∈ H2 has its spectrum,{

λ, λ
}

,

with
λ = x+ i

√
y2 + 02 + 02 = x+ yi,

and the corresponding q-spectral form becomes

q =

(
x+ yi 0

0 x− yi

)
= [q]

is well-determined in H2. However, if q = x+ yi+ uj+ vk ∈H, with either u 6= 0, or v 6= 0 in R, then

q =

 x+ i
√
y2 + u2 + v2 0

0 x− i
√
y2 + u2 + v2

 ,

by Definition 3.2.
For example, if q1 = 2 − i+ j− 2k and q2 = 2 − i+ 0j+ 0k in H, then their q-spectral forms are

q1 =

(
2 +
√

6i 0
0 2 −

√
6i

)
, q2 =

(
2 − i 0

0 2 + i

)
= [q2],

respectively, in H2, where [q2] ∈ H2 is the realization of q2, by Definition 3.2.
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3.2. Similarity on H2

Throughout this section, we let

a = x+ yi,b = u+ vi ∈ C, with x,y,u, v ∈ R, and q = a+ bj = x+ yi+ uj+ vk ∈H. (3.4)

We showed in Section 3.1 that each quaternion q ∈ H of (3.4) is realized to be [q] in H2, having its
q-spectral form,

q =

(
λ 0
0 λ

)
, with λ = x+ i

√
y2 + u2 + v2, (3.5)

if either u 6= 0, or v 6= 0 in R, and

q = [q] =

(
x+ yi 0

0 x− yi

)
, (3.6)

in H2, if u = 0 = v in R.
Suppose b ∈ C× in (3.4). For t ∈ C×, define a (2× 2)-matrix Qt(q) by

Qt(q) =

(
t −t

(
a−λ
b

)
t
(
a−λ
b

)
t

)
, (3.7)

in M2(C), where q ∈H is in the sense of (3.4).
By the assumption that t, b ∈ C×, the nonzero matrix Qt(q) of (3.7) is well-defined in M2(C). Note

that this matrix Qt(q) is invertible, since

det (Qt(q)) = |t|2

(
1 +

∣∣∣∣a− λb
∣∣∣∣2
)
6= 0 in C. (3.8)

By the straightforward computations, one can get that

[q]Qt(q) = Qt(q)q, whenever t,b ∈ C×, (3.9)

in M2(C) (e.g., see [1, 2] for details). Note here that the (2 × 2)-matrix Qt(q) of (3.7) is contained in
the noncommutative field H2 by (2.12)) (which implies the invertibility (3.8) in M2(C) automatically),
whenever t, b ∈ C×.

Theorem 3.3. Let q = a+ bj ∈H be a quaternion (3.4), realized to be [q] in H2, and let q ∈ H2 be the q-spectral
form of q. If b 6= 0 in C, then

q = Qt(q)
−1[q]Qt(q)⇐⇒ [q] = Qt(q)qQt(q)−1

”in H2,” where

Qt(q) =

(
t −

(
a−λ
b

)
t(

a−λ
b

)
t t

)
∈ H2, (3.10)

for all t ∈ C×. Meanwhile, if b = 0 in C, then

q = [w]−1q[w] = [w]−1[q][w], in H2, (3.11)

where

w = w+ 0j+ 0k ∈ C× in H. (3.12)
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Proof. First, suppose that b = 0 in C as in (3.12), and hence, q = a+ 0j in H. Then, by (3.5), the quaternion
q has its q-spectral form,

q =

(
a 0
0 a

)
= [q] in H2,

by (3.6). Suppose w ∈ C×, and w = w + 0j+ 0k ∈H, realized to be [w] ∈ H2. Then

q = [q] =

(
a 0
0 a

)
=

(
wa
w 0
0

(
wa
w

) ) =

(
w 0
0 w

)(
a 0
0 a

)(
w−1 0

0 w−1

)
= [w][q][w−1] = [w]q[w]−1,

in H2. Therefore, the relation (3.11) holds true under (3.12) ′.
Assume now that b 6= 0 in C. Then, for any t ∈ C×, the corresponding matrices Qt(q) of (3.7) satisfy

Qt(q)q = [q]Qt(q),

by (3.5) and (3.9). Thus, by the invertibility (3.8) of Qt(q),

Qt(q)
−1 (Qt(q)q) = Qt(q)−1[q]Qt(q) in H2,

if and only if
q = Qt(q)

−1[q]Qt(q) in H2,

implying the relation (3.10).

The importance of (3.10) and (3.11) is that these formulas hold not only in M2 (C), but also in H2, i.e.,
Theorem 5 shows that, for a quaternion q ∈ H with its q-spectral form q ∈ H2, there exists at least one
nonzero matrix A ∈ H2, such that

q = A−1[q]A, or [q] = AqA−1,

in H2.

Corollary 3.4. Let q = a+ bj ∈H be a quaternion (3.4) with b 6= 0 in C, and let

λ = x+ i
√
y2 + u2 + v2 ∈ C in H.

Then there exist

yt = t+

(
−t

(
a− λ

b

))
j ∈H,

for any t ∈ C×, such that

q = ytλy
−1
t in H. (3.13)

Meanwhile, if b = 0 in C, then there exists non-zero h ∈ C ⊂H, such that

q = hqh−1 in H. (3.14)

Proof. The relations (3.13) and (3.14) hold by (3.10) and (3.11), respectively, by (2.13). See [2] for details.

Corollary 3.4 shows that, for any q ∈ H with its realization [q] ∈ H2, there exists at least one nonzero
q0 ∈H, such that

q = q0λq
−1
0 in H, (3.15)

where spec ([q]) = {λ, λ} in C, by (3.13) and (3.14).
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Definition 3.5. Let q ∈H be a quaternion with its realization [q] ∈ H2, and let

q =

(
λ 0
0 λ

)
= [λ] ∈ H2

be the q-spectral form. Then the (1, 1)-entry λ ∈ C of q is called the quaternion-spectral value (in short,
q-spectral value) of q.

For example, if q1 = 2 − i− j+ k ∈H, then the q-spectral value is

2 + i
√

(−1)2 + (−1)2 + 12 = 2 +
√

3i;

while if q2 = 2 − i+ 0j+ 0k ∈H, then the q-spectral value is

2 − i = q2 in C,

by Definitions 3.2 and 3.5.

3.3. Equivalence on H

In this section, we let q ∈H be in the sense of (3.4). Define a relation R on H by

q1Rq2
def⇐⇒ λ1 = λ2 in C, (3.16)

where λl are the q-spectral values of ql, for l = 1, 2. It is not hard to check that this relation R of (3.16) is
an equivalence relation on H (e.g., [2] ).

Definition 3.6. The equivalence relation R of (3.16) is called the quaternion-spectral equivalence relation
(in short, the q-spectral relation) on H. If the relation (3.16) holds, then the two q-spectral equivalent
quaternions q1 and q2 are said to be q-spectral related in H.

Let ql = al+blj be q-spectral related quaternions in H, and let λ ∈ C be the identical q-spectral value
of ql, for l = 1, 2. Then there exists yl ∈H such that

ql = ylλy
−1
l in H, ∀l = 1, 2, (3.17)

by (3.15). In particular, if bl 6= 0 in C, then

yl = t+

(
− t

(
al − λ

bl

))
j ∈H, ∀l = 1, 2,

by (3.13); meanwhile, if bl = 0 in C, then yl ∈ C× in H, by (3.14). So, one can have that

q2 = y2λy
−1
2 = y2

(
y−1

1 y1
)
λ
(
y−1

1 y1
)
y−1

2

=
(
y2y

−1
1

) (
y1λy

−1
1

) (
y1y

−1
2

)
by (3.17) =

(
y2y

−1
1

)
q1
(
y2y

−1
1

)−1
by (2.13),

(3.18)

in H.
Recall that two matrices A1 and A2 are similar in a matricial ring Mn(C), for n ∈ N, if there exists an

invertible matrix U ∈Mn(C), such that

A2 = UA1U
−1, in Mn (C) . (3.19)

It is also well-know that if two matrices A1 and A2 are similar in the sense of (3.19), then

spec (A1) = spec (A2) in C, (3.20)

and vice versa (e.g., [7, 8]).
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Definition 3.7. Let ql ∈ H be quaternions realized to be [ql] ∈ H2, for l = 1, 2. The realizations [q1] and
[q2] are said to be similar “in H2,” if there exists a nonzero matrix U “in H2,” such that

[q2] = U[q1]U
−1“ in H2. ′′ (3.21)

Also, two quaternions q1 and q2 are said to be similar in H, if their realizations [q1] and [q2] are similar
in the sense of (3.21).

Note that the similarity on H2 (and hence, that on H) is an equivalence relation, because the similarity
(3.19), or (3.20), is a well-defined equivalence relation on M2 (C).

Theorem 3.8. Two quaternions q1 and q2 are q-spectral related, if and only if they are similar in H, i.e., as
equivalence relations,

the q-spectral relation on H = the similarity on H. (3.22)

Proof.

(⇒) If q1 and q2 are q-spectral related in H, then they are similar in H by (3.18), (3.19), and (3.21).

(⇐) Suppose q1 and q2 are similar in H, equivalently, their realizations [q1] and [q2] are similar in H2 by
(3.22). If λl are the q-spectral values of ql, then [ql] and [λl] are similar in the sense of (3.21) in H2, too,
for all l = 1, 2. Since the similarity on H2 is an equivalence relation, the q-spectral forms [λ1] and [λ2] are
similar in H2 by (3.20). Because

[λl] =

(
λl 0
0 λl

)
∈ H2, for l = 1, 2,

we have

[λ1] =

(
λ1 0
0 λ1

)
=

(
λ2 0
0 λ2

)
= [λ2],

by (3.21), and hence,
λ1 = λ = λ2 in C.

Therefore, if q1 and q2 are similar in H, then they are q-spectral related in H.

3.4. Quaternion-spectral mapping theorem
Throughout this section, we let

q = x+ yi+ uj+ vk ∈H

be a quaternion with its q-spectral value,

λ = x+ i
√
y2 + u2 + v2,

if either u 6= 0 or v 6= 0 in R, or
λ = x+ yi,

if u = 0 = v in R. Now, let C[z] be the polynomial ring over a field C in a variable z,

C[z] = {f(z) : f is a polynomial in z over C},

i.e., f(z) ∈ C[z], if and only if

k∑
n=0

anz
n, for an ∈ C, ∀n = 1, . . . ,k, (3.23)
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for all k ∈N0 = N∪ {0}. It is well-known that if A is a matrix in Mn(C) for n ∈ N, and if f ∈ C[z] is a
polynomial (3.23), then

spec (f(A)) = f (spec(A)) in C, (3.24)

by the spectral mapping theorem, where the right-hand side of (3.24) means that

f (spec(A)) = {f(t) : t ∈ spec(A)},

set-theoretically, and in the left-hand side of (3.24), a new matrix f(A) ∈Mn(C) is

akA
k + ak−1A

k−1 + · · ·+ a2A
2 + a1A+ a0In,

where In is the identity (n× n)-matrix of Mn(C), whenever f(z) is in the sense of (3.23). By (3.24), one
can get that

spec (f ([q])) = f (spec ([q])) , ∀f ∈ C[z],

“in M2 (C),” for all q ∈H, realized to be [q] ∈ H2 in M2 (C).
Now, define the subset Cr[z] of C[z] by

Cr[z] =
∞
∪
N=0

{

N∑
n=0

anz
n ∈ C[z] : a0,a1, . . . ,aN ∈ R}. (3.25)

Theorem 3.9. Let q ∈H be a quaternion (3.4) with its q-spectral value λ ∈ C. If

f(z) =

N∑
n=0

anz
n ∈ Cr[z],

then

f(λ) ∈ C is the q-spectral value of f(q) ∈H, (3.26)

where Cr[z] is the subset (3.25) of C[z], and f(q) =
N∑
n=0

anq
n in H.

Proof. Let q ∈ H be a quaternion (3.4) with its q-spectral value λ ∈ C, and let h(z) ∈ C[z]. If [q] ∈ H2 is
the realization of q, then

spec (h ([q])) =
{
h (λ) , h

(
λ
)}

, in C,

by (3.24). Note however that, for h(z) ∈ C[z],

h
(
λ
)
6= h(λ) in C, in general.

For instance, if h(z) = iz in C[z], then h(1 + i) = −1 − i 6= 1 + i = h
(
1 + i

)
. However, if f(z) =

N∑
n=0

anz
n ∈

Cr[z] with a0, a1, . . . , aN ∈ R, then

f
(
λ
)
=

N∑
n=0

an
(
λ
)n

=

N∑
n=0

an
(
λn
)
=

N∑
n=0

(anλn) =

N∑
n=0

anλn = f(λ),

in C. It shows that, if f(z) ∈ Cr[z], then

spec (f ([q])) =
{
f(λ), f

(
λ
)}

=
{
f (λ) , f (λ)

}
,

in C, satisfying that
the q-spectral form of f ([q]) = f (q)

in H2, if and only if the q-spectral value of f (q) is identified with f (λ) in C ⊂H, where q is the q-spectral
form of [q] in H2. Therefore, the statement (3.26) holds.
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Remark that Theorem 3.9 holds for the polynomials of Cr[z], not for those of C[z] (in general). Now,
let R[x] be the polynomial ring over R in a variable x, i.e.,

R[x] =
∞
∪
N=0

{

N∑
n=0

anx
n : a0, a1, . . . , aN ∈ R}. (3.27)

Then, the above theorem can be re-stated as follows.

Corollary 3.10. Let f(x) ∈ R[x], where R[x] is the polynomial ring (3.27). If q ∈ H is a quaternion with its
q-spectral value λ ∈ C, realized to be [q] ∈ H2, then

spec (f ([q])) = {f(λ), f(λ)} in C. (3.28)

Proof. The set-equality (3.28) holds by (3.26) and (3.27).

The relation (3.28) is called the quaternion-spectral mapping theorem.

Theorem 3.11. Let q1 and q2 be q-spectral related in H, with their q-spectral value λ ∈ C. If f(x) ∈ R[x], then
f(q1) and f(q2) are q-spectral related in H, too, with their identical q-spectral value f(λ) ∈ C. Equivalently, if q1
and q2 are similar in H, then f(q1) and f(q2) are similar in H, for all f(x) ∈ R[x].

Proof. Let q1 and q2 be q-spectral related quaternions in H. Assume that λ ∈ C is the q-spectral value of
both q1 and q2. Then, for any f(x) ∈ R[x], the quantity f(λ) ∈ C is the q-spectral value of both f(q1) and
f(q2) by (3.26) and (3.28). Therefore, two quaternions f(q1) and f(q2) are q-spectral related in H. By (3.22),
the q-spectral relation and the similarity are equivalent on H. So, if q1 and q2 are similar, then f(q1) and
f(q2) are similar in H, for all f(x) ∈ R[x].

3.5. Quaternion-Spectralization σ
Define now a function σ : H→H by

σ(q)
def
= the q-spectral value of q, ∀q ∈H. (3.29)

For instance,

σ (1 + 0i+ 2j− 3k) = 1 + i
√

02 + 22 + (−3)2 = 1 +
√

13i,

and
σ (−2 − i+ 0j+ 0k) = −2 − i,

etc.

Definition 3.12. We call the function σ of (3.29), the quaternion-spectralization (in short, the q-spectraliz-
ation).

Let’s consider the range of the q-spectralization σ.

Proposition 3.13. If σ is the q-spectralization (3.29), then

σ(H) = C. (3.30)

Proof. Let q = x+ yi+ uj+ vk∈H be an arbitrary quaternion. If σ is the q-spectralization (3.29), then

σ (q) = x+ i
√
y2 + u2 + v2 ∈ C,

(if either u 6= 0, or v 6= 0), or
σ (q) = x+ yi ∈ C,
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(if u = 0 = v) in H. So, one has
σ (H) ⊆ C.

Now, let t+ si ∈ C, with t, s ∈ R. If s > 0 in R, then there exists

h = t+ yi+ uj+ vk ∈H, with t,y,u, v ∈ R,

such that
σ (h) = t+ i

√
y2 + u2 + v2 ∈ C,

satisfying √
y2 + u2 + v2 = s in R,

by (3.29). Meanwhile, if s < 0 in R, then there exists

h = t+ si+ 0j+ 0k ∈H,

such that
σ (h) = t+ si in C,

and hence,
C ⊆ σ (H) .

Therefore, the set-equality (3.30) holds.

4. Classification of H

Let σ be the q-spectralization (3.29). For a fixed quaternion q ∈H, define the subset,

qo = {h ∈H : σ (h) = σ (q)} , (4.1)

in H. Then
qo = (σ(q))o in H,

set-theoretically. Thus,
σ (q) ∈ C ⊂H

becomes a representative of all quaternions of qo in H, by (3.22) and (3.30), i.e., the subset qo of (4.1)
forms an equivalence class of q in H for the q-spectral relation, or the similarity. Define now the quotient
set Ho by

Ho def
= {qo : q ∈H} , (4.2)

where qo are the equivalence classes (4.1).

Theorem 4.1. The following set-equality holds;

Ho = C. (4.3)

Proof. Note first that qo = (σ(q))o in Ho by (4.1), for all q ∈H. Therefore, by (3.30) and (4.2),

Ho = {λo : λ ∈ C, ∃q ∈H, s.t., σ(q) = λ} ,

and hence,

Ho = {λo : λ ∈ C} . (4.4)



I. Cho, J. Nonlinear Sci. Appl., 15 (2022), 14–40 26

Define a function ϕ : Ho → C by
ϕ (λo) = λ, for all λo ∈Ho,

where λo are in the sense of (4.4) for λ ∈ C. Then, by (3.30), (4.1), (4.3), and (4.4), the function ϕ is
surjective from Ho onto C.

Also, for λo1 , λo2 ∈Ho (in the sense of (4.4)), if

ϕ (λo1 ) = λ1 = λ2 = ϕ (λo2 ) in C,

then λo1 = λo2 in Ho, by (3.28), (4.2) and (4.4), i.e., ϕ is injective, too. Therefore, the function ϕ is a bijection,
implying the set-equality (4.3).

Theorem 4.1 shows that the quaternions H is classified by the q-spectral relation (or, the similarity, or
the action of the q-spectralization σ). And the corresponding classification is characterized by the set C in
the sense that: every quantity λ ∈ C represents all quaternions q ∈H satisfying σ (q) = λ.

5. Quaternionic vector spaces

In this section, we consider a vector space Hn over the quaternions H, for n ∈ N. Since H is a a
noncommutative field (and hence, a ring), vector spaces over H are well-determined algebraically.

5.1. Vector spaces Hn over H

For n ∈N, define a Cartesian product set Hn of the n-copies of the quaternions H by

Hn def
= {(q1, . . . , qn) : q1, . . . , qn ∈H}, (5.1)

consisting of n-tuples of quaternions. Define now a binary operation (+) on Hn by

(q1, . . . , qn) + (h1, . . . ,hn) = (q1 + h1, . . . , qn + hn) , (5.2)

for all (q1, . . . , qn), (h1, . . . , hn) ∈Hn, where (+) in the right-hand side of (5.2) is the quaternion-addition
of (2.2). Define now the left scalar product, and the right scalar product on Hn by

q (q1, . . . , qn) = (qq1, . . . ,qqn) , and (q1, . . . ,qn)q = (q1q, . . . ,qnq) , (5.3)

respectively, for all q ∈H, (q1, . . . , qn) ∈Hn, where (·) in the right-hand sides of (5.3) is the quaternion-
multiplication of (2.2). From below, if there is no confusion, it is said that “(·) is the scalar product (5.3)”,
which means the scalar products from both left and right as in (5.3).

Definition 5.1. The mathematical triple (Hn, +, ·) is called the n-dimensional quaternion-vector space
over H (in short, the n-dimensional H-vector space), where Hn is the set (5.1), (+) is the addition (5.2),
and (·) is the scalar product (5.3). For convenience, we denote the triple (Hn, +, ·) simply by Hn from
below.

It is clear that the algebraic structure Hn of Definition 17 is indeed a vector space over a ring H.

Definition 5.2. Let V be a set containing its subset H. Assume that V is equipped with a well-defined
addition (+), and a scalar product (·) over H, in the sense that:

v1 + v2 ∈ V , ∀v1, v2 ∈ V ,

respectively,
qv, vq ∈ V , ∀q ∈H, and v ∈ V .

Then the triple (V , +, ·) is called a vector space over the quaternions H (in short, a H-vector space). All
elements of (V , +, ·) are said to be H-vectors.
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By Definitions 5.1 and 5.2, all n-dimensional H-vector spaces Hn are H-vector spaces, for all n ∈N.

Definition 5.3. Let V1 and V2 be H-vector spaces. A function T : V1 → V2 is said to be a linear transfor-
mation over the quaternions H (or, in short, H-linear transformation), if

T (v1 + v2) = T(v1) + T(v2) and T (qv) = qT(v) and T (vq) = T (v)q, (5.4)

for all q ∈ H, and v, v1, v2 ∈ V1. A bijective H-linear transformation T of (5.4) is called a H-vector-space-
isomorphism (or, in short, a H-isomorphism). In particular, if T is a H-isomorphism, then the H-vector
spaces V1 and V2 are said to be H-isomorphic.

Let H2 be the isomorphic noncommutative field (2.12) of the quaternions H for the representation (C2,
π) by (2.13). Define now a set Hn2 by the Cartesian product set of the n-copies of H2,

Hn2 = {([q1], . . . , [qn]) : [q1], . . . , [qn] ∈ H2} . (5.5)

Define a binary operation (+), and a (left-and-right) scalar-product(s) (·) on the set Hn2 of (5.5) by

([q1], . . . , [qn]) + ([h1], . . . , [hn])
def
= ([q1] + [h1], . . . , [qn] + [nn]) = ([q1 + h1], . . . , [qn + hn]) ,

q ([q1], . . . , [qn])
def
= ([q][q1], . . . , [q][qn]) = ([qq1], . . . , [qqn]) ,

([q1], . . . , [qn])q = ([q1q], . . . , [qnq]) ,

(5.6)

for all q, q1, . . . , qn, h1, . . . , hn ∈H.

Lemma 5.4. The triple Hn2
denote
=

(
Hn2 , +, ·

)
of the set Hn2 of (5.5) and the operations (+) and (·) of (5.6) is a

H-vector space.

Proof. Since the operations of (5.6) are well-defined on the set Hn2 by (2.13) and (5.5), the triple Hn2 forms
a H-vector space in the sense of Definition 5.2.

Furthermore, one can verify that two H-vector spaces Hn and Hn2 are related as follows by (2.13).

Theorem 5.5. For any n ∈N, we have

Hn q-iso
= Hn2 , (5.7)

where “
q-iso
= ” means “being H-isomorphic.”

Proof. Define a function,
Π : Hn → Hn2

by

Π ((q1, . . . , qn))
def
= (π(q1), . . . , π(qn)) = ([q1], . . . , [qn]) , (5.8)

for all q1, . . . , qn ∈ H, where
(
C2,π

)
is the representation (2.11) of H. Since the action π : H → H2 is a

bijection, the function Π is bijective from Hn onto Hn2 by (5.8), and,

Π ((q1, . . . ,qn) + (h1, . . . ,hn)) = Π ((q1 + h1, . . . , qn + hn))

= ([q1 + h1], . . . , [qn + hn]) by (5.2)
= ([q1] + [h1], . . . , [qn] + [hn]) by (5.8)
= ([q1], . . . , [qn]) + ([h1], . . . , [hn]) by (2.8)
= Π ((q1, . . . , qn)) +Π ((h1, . . . , hn)) by (5.6)
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for all (q1, . . . , qn), (h1, . . . , hn) ∈Hn. Also, one can get that

Π (q(q1, . . . , qn)) = Π ((qq1, . . . , qqn))
= ([qq1], . . . , [qqn]) by (5.3)
= ([q][q1], . . . , [q][qn]) by (5.8)
= q ([q1], . . . , [qn]) by (2.8)
= qΠ ((q1, . . . , qn)) by (5.6),

and similarly,
Π ((q1, . . . ,qn)q) = Π ((q1, . . . ,qn))q,

for all q ∈H, and (q1, . . . , qn) ∈Hn.
Therefore, the isomorphic relation (5.7) holds.

By (5.7), one can use two H-isomorphic Hn and Hn2 alternatively as the n-dimensional H-vector space
from below.

Definition 5.6. Let V be a H-vector space, and let W be a R-vector space (i.e., a vector space over a ring
R), where R is a subring of H. If a function T : V →W satisfies

T (v + w) = T (v) + T (w) , and T (rv) = rT (v) , and T (vr) = T (v) r,

in W, for all v, w ∈ V and r ∈ R, then this function T is called a linear transformation over R (or, in short, a
R-linear transformation). If a R-linear transformation T is bijective, then it is said to be an R-isomorphism;
and, in such a case, V and W are said to be R-isomorphic.

We are interested in the cases where a subring R of H in Definition 22 is C, or R.

Theorem 5.7. The n-dimensional H-vector space Hn is R-isomorphic to C2n, and it is also R-isomorphic to R4,
i.e.,

Hn r-iso
= C2n, and Hn r-iso

= R4n, (5.9)

where “r-iso
= ”means “being R-isomorphic.”

Proof. Define a function T : Hn → C2n by

T (q1,q2 . . . ,qn) = (a1,b1,a2,b2, . . . ,an,bn) ,

for all (q1, . . . ,qn) ∈Hn, where ql = al + blj, with al,bl ∈ C, for all l = 1, . . . ,n. Then it is not difficult to
show this function T is a R-isomorphism, i.e., the first R-isomorphic relation of (5.9) holds. Now, define
a function S : Hn → R4n by

S (q1, . . . ,qn) = (x1,y1,u1, v1, . . . , xn,yn,un, vn) ,

for all (q1, . . . ,qn) ∈Hn, with

ql = xl + yli+ ulj+ vlk ∈H, with xl,yl,ul, vl ∈ R,

for all l = 1, . . . ,n. Then, similarly, it is shown that it is a R-isomorphism, i.e., the second R-isomorphic
relation of (5.9) holds, too.
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5.2. The function
∑n : Hn → Hn2

In Section 5.1, we considered H-vector spaces Hk and H-isomorphic vector spaces Hk2 , for k ∈N.
Here, motivated by the classification of Section 4, we study a certain function,

Σn : Hn → Hn2 ,

implying our spectral analysis of Sections 2 and 3 on the quaternions H.
Let σ : H→H be the q-spectralization (3.29), i.e., for all q = x+ yi+ uj+ vk ∈H,

σ (x+ yi+ uj+ vk) = x+ i
√
y2 + u2 + v2,

if either u 6= 0, or v 6= 0; and
σ (x+ yi+ 0j+ 0k) = x+ yi,

if u = 0 = v in R. Then it induces the q-spectral forms of quaternions, i.e., the following diagram assigns
a function;

q
σ7−→ σ(q)

π7−→ q =

(
σ(q) 0
0 σ(q)

)
,

in H2. Define a function
∑

: H→ H2 by ∑ def
= π ◦ σ,

i.e., ∑
(q) =

(
σ(q) 0
0 σ(q)

)
= [σ(q)], (5.10)

for all q ∈H. Since σ : H→H is a well-defined function whose range is C by (3.30), and the action π : H

→ H2 is a well-defined bijection, the function
∑

of (5.10) is well-defined.
Consider now that: if q1 = 2 + i− j+ k and q2 = 2 − i+ j+ k are distinct quaternions, then∑

(q1) =

(
2 +
√

3i 0
0 2 −

√
3i

)
=
∑

(q2) ,

in H2. It shows that the function
∑

is not injective. Moreover, since σ (H) = C in H, this function
∑

is
not surjective either. Also, observe that: if

q1 = 1 + 0i+ j+ 0k,

and
q2 = 2 − i+ j+ 0k,

in H, then ∑
(q1) =

(
1 + i 0

0 1 − i

)
, and

∑
(q2) =

(
2 +
√

2i 0
0 2 −

√
2i

)
, (5.11)

respectivelt, in H2. If q1 and q2 are as above, then

q1 + q2 = 3 − i+ 2j+ 0k,

satisfying ∑
(q1 + q2) =

(
3 +
√

5i 0
0 3 −

√
5i

)
. (5.12)

The formulas (5.11) and (5.12) show that∑
(q1 + q2) 6=

∑
(q1) +

∑
(q2) ,

in H2, implying that the function
∑

is not linear either.
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Lemma 5.8. The nonlinear function
∑

of (5.10) is a function from H into H2 “over R,” in the sense that: it is a
well-defined function from H into H2 satisfying∑

(tq) = t
∑

(q) =
∑

(q) t =
∑

(qt) , (5.13)

for all q ∈H, and “t ∈ R,” where zA ∈ H2 means

(zI2) (A) in H2 ⊂M2 (C) ,

for all z ∈ C and A ∈M2 (C).

Proof. We discussed that
∑

= π ◦ σ : H → H2 is a well-defined nonlinear function. But this function is
over R in the sense of (5.13). Indeed, if t ∈ R and q ∈H, then

σ (tq) = tσ (q) = σ (q) t = σ (qt) in H,

by the q-spectral mapping theorem (3.28).

The above lemma shows that the function
∑

is a nonlinear function over R from H into H2.

Definition 5.9. Let V1 and V2 be H-vector spaces. A function f : V1 → V2 is said to be over R, if

f (tw) = tf(w), and f (wt) = f (w) t,

in V2, for all w ∈ V1 and t ∈ R. Similarly, f is said to be over C, or, over H, if the above equalities hold for
all t ∈ C, respectively, for all t ∈H.

Now, let Hn be the n-dimensional H-vector space, and let Hn2 be an isomorphic H-vector space of
Hn. Define a function,

∑n : Hn → Hn2 , by

n∑
((q1, . . . , qn)) =

(∑
(q1), . . . ,

∑
(qn)

)
in Hn2 , (5.14)

for all (q1, . . . , qn) ∈ Hn. By Lemma 5.8, one can verify that the function
∑n of (5.14) is over R, too, in

the sense of Definition 5.9, i.e.,

Σn (tw) = tΣn (w) = Σn (w) t = Σn (wt) ,

in Hn2 , for all w ∈Hn, and t ∈ R.

Proposition 5.10. The function
∑n : Hn → Hn2 of (5.14) is a nonlinear function over R.

Proof. Since a function
∑

: H → H2 of (5.10) is a well-defined nonlinear function, the morphism
∑n is

nonlinear from Hn to Hn2 by (5.14). Now, let t ∈ R, and w = (q1, . . . ,qn) ∈Hn. Then

n∑
(tw) =

n∑
((tq1, . . . , tqn))

=
(∑

(tq1), . . . ,
∑

(tqn)
)

by (5.3)

=
(
t
∑

(q1), . . . , t
∑

(qn)
)

by (5.14)

= t
(∑

(q1), . . . ,
∑

(qn)
)

by (5.13) = t
n∑

((q1, . . . ,qn)) = t
n∑

(w),

(5.15)

and similar to (5.15),
Σn (wt) = Σn (w) t.

So, the function
∑n is a nonlinear function over R.
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5.3. The n-quaternion-spectralization on Hn

Throughout this section, we fix n ∈ N. Motivated by the main results of Section 5.2, define here a
function, σn : Hn →Hn, by

σn ((q1, . . . ,qn)) = (σ(q1), . . . , σ(qn)) in Cn ⊂Hn, (5.16)

for all (q1, . . . , qn) ∈ Hn. The well-definedness of this function σn of (5.16) is guaranteed by that of
∑n

by (5.14). By (4.3), we have
σn (Hn) = Cn in Hn.

Note that, since the q-spectralization σ is nonlinear, the function σn on Hn is not linear either by (5.16).
But it is over R in the sense of Definition 5.9 because

∑n is.

Proposition 5.11. The function σn : Hn →Hn of (5.16) is nonlinear over R.

Proof. The function σn is nonlinear over R, since the function
∑n of (5.14) is nonlinear over R by Propo-

sition 5.10.

For example, if

q1 = 2 + 0i+ j− 1k, q2 = 1 − i+ 0j+ 0k, q3 = 4 + i− j− 2k,

in H, inducing
(q1,q2,q3) ∈H3,

then
σ3 ((q1, q2, q3)) =

(
2 +
√

2i, 1 − i, 4 +
√

6i
)

,

in C3 ⊂H3.

Definition 5.12. For any n ∈N, the function σn : Hn → Hn of (5.16) is called the n-quaternion-
spectralization (in short, the q-spectralization) on Hn. Our q-spectralization σ of (3.29) is redefined
by this general definition, i.e., σ = σ1 on H = H1.

6. Noncommutative unital rings
∑

n(H) over R

In Section 5, we introduced two types of functions acting on the H-vector space Hn, for n ∈N. The
first one is the function,

Σn : Hn → Hn2
q-iso
= Hn,

of (5.14), and the second one is the q-spectralization,

σn : Hn →Hn.

These functions are nonlinear, but they are over R. Also, by (4.3), one has

σn (Hn) = Cn,

set-theoretically, i.e., all H-vectors (q1, . . . ,qn) of Hn are classified by the C-vectors,

(σ (q1) , . . . ,σ (qn)) ∈ Cn.

Theorem 6.1. The q-spectralization σn is idempotent in the sense that:

σn ◦ σn = σn on Hn. (6.1)
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Proof. For an H-vector w = (q1, . . . ,qn),

(σn ◦ σn) (w) = σn (σn ((q1, . . . ,qn)))= σn ((σ(q1), . . . ,σ(qn))) = (σ (σ(q1), . . . ,σ (σ(qn)))) . (6.2)

Since the q-spectral values σ (ql) of ql are C-quantities in H, for all l = 1, . . . ,n,

σ ◦ σ (ql) = σ (σ(ql)) = σ(ql) in C ⊂H,

for all l = 1, . . . ,n. Thus the equality (6.2) is identified with

σn (σn(w)) = (σ(q1), . . . ,σ(qn)) = σn (w) ,

in Cn ⊂Hn, i.e., the idempotence (6.1) holds on Hn by σn.

The above theorem shows our q-spectralizations σk are nonlinear, idempotent on Hk over R, for all
k ∈N, by (6.1).

Now, let Mn(C) be the matricial ring acting on Cn. Define now a set
∑
n(H) by∑

n

(H)
def
= {α ◦ σn : α ∈Mn(C)}. (6.3)

By (6.3), all elements α ◦ σn are well-defined nonlinear functions on Hn over R. Remark that, if

w1 = (q1, . . . , qn) ,w2 = (h1, . . . , hn) ∈Hn, and t ∈ R,

then

α ◦ σn (w1 +w2) = α (σn ((q1 + h1, . . . ,qn + hn)))

= α ((σ(q1 + h1), . . . , σ(qn + hn)))

6= α (σn ((q1, . . . ,qn))) +α (σn ((h1, . . . ,hn))) = α ◦ σn (w1) +α ◦ σn(w2),
(6.4)

in general, because of the nonlinearity of σn. However,

α ◦ σn (tw1) = α (σn ((tq1, . . . , tqn))) = α ((tσ(q1), . . . , tσ(qn)))
= α (tσn ((q1, . . . , qn)))
= α ◦ (tσn) (w1) = (tα) ◦ σn (w1) = t (α ◦ σn) ((q1, . . . ,qn)) ,

(6.5)

for all t ∈ R, since α ∈Mn (C) is (linear, and hence, it is) over R, too.

Proposition 6.2. Every element α ◦ σn ∈ Σn (H) is a nonlinear function over R.

Proof. Each element α ◦ σn ∈
∑
n (H) is not linear by (6.4), but it is over R by (6.5).

Notation: From below, we denote α ◦ σn ∈
∑
n(H) by α(n).

For instance, if
q1 = 2 + 0i− j+ k, q2 = 1 − i, q3 = −1,

inducing
w = (q1,q2,q3) ∈H3,

and if

α =

 1 0 i

1 −i 0
0 1 0

 ∈M3(C),
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then, for the corresponding α(3) ∈
∑

3(H), one has

α(3) (w) = α
(

2 +
√

2i, 1 − i, − 1
)
=
(

2 + (
√

2 − 1)i, 1 + (
√

2 − 1)i, 1 + i
)

,

in H3. On the set
∑
n (H) of (6.3), define the operations (+) and (·) by

α
(n)
1 +α

(n)
2

def
= (α1 +α2) ◦ σ(n) = (α1 +α2)

(n),

α
(n)
1 α

(n)
2

def
= (α1α2) ◦ σ(n) = (α1α2)

(n),
(6.6)

for all α(n)
1 , α(n)

2 ∈
∑
n(H), respectively, where the addition (+) and the multiplication (·) on the far right-

hand sides of (6.6) are the usual matricial addition, and matricial multiplication on Mn(C), respectively.
These operations of (6.6) are well-defined on

∑
n (H) by (4.3) and (6.1). So, the triple,

∑
n

(H)
denote
=

(∑
n

(H), +, ·

)
, (6.7)

forms an algebraic structure, where (+) and (·) of (6.7) are in the sense of (6.6). Observe that if

w = (q1, . . . ,qn) ∈Hn,

then (
α
(n)
1 α

(n)
2

)
(w) = α(1) (α2 (σ(q1), . . . ,σ(qn)))= α1 (σ

n (z1, . . . , zn)),

where

(z1, . . . , zn) = α2 (σ(q1), . . . ,σ(qn)) ∈ Cn (in Hn)=α1 (z1, . . . , zn) = (α1α2) (σ(q1), . . . ,σ(qn)) ,

by (6.1)
=(α1α2 ◦ σn) (w) = (α1α2)

(n) (w) ,

in Hn. Since w ∈Hn is arbitrary,

α
(n)
1 α

(n)
2 = (α1α2)

(n) in Σn (H) .

It shows that the multiplication (·) of (6.6) is indeed well-defined on
∑
n (H).

Moreover, one can define a R-scalar product on
∑
n(H) by

t ·α(n) = t ·
(
α ◦ σ(n)

)
def
= tα ◦ σn = α ◦ tσn = α(n) · t, (6.8)

for all t ∈ R, and α(n) ∈
∑
n(H). The last two equalities of (6.8) say that the definition (6.8) covers both

left and right scalar products. Also, they demonstrates that this R-scalar product is well-defined by (6.5).

Theorem 6.3. The triple
∑
n(H) of (6.7) is a noncommutative unital ring over R, in the sense that: (i) it is a

noncommutative ring with its unity, and (ii) there is a well-defined R-scalar product on
∑
n (H).

Proof. Let
∑
n (H) be the algebraic triple (6.7). For the addition (+) of (6.6),(

α
(n)
1 +α

(n)
2

)
+α

(n)
3 = (α1 +α2)

(n) +α
(n)
3 = ((α1 +α2) +α3)

(n)

= (α1 + (α2 +α3))
(n)

= α
(n)
1 + (α2 +α3)

(n) = α
(n)
1 +

(
α
(n)
2 +α

(n)
3

)
,
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for α(n)
l ∈

∑
n(H), for all l = 1, 2, 3. Also, there exists the zero matrix On of Mn(C) inducing

0n
denote
= On ◦ σn ∈ Σn (H) ,

such that
α(n) + 0(n) = (α+On)

(n) = α(n) = (On +α)(n) = 0(n) +α(n),

for all α(n) ∈
∑
n(H). For the (+)-identity 0(n) and arbitrary α(n) ∈

∑
n(H), there exists a unique (−α)(n)

∈
∑
n(H), such that

α(n) + (−α)(n) = (α−α)(n) = 0(n) = (−α+α)(n) = (−α)(n) +α(n),

in
∑
n(H). Also,

α
(n)
1 +α

(n)
2 = (α1 +α2)

(n) = (α2 +α1)
(n) = α

(n)
2 +α

(n)
1 ,

for all α(n)
1 , α(n)

2 ∈
∑
n(H). So, the algebraic pair (

∑
n(H), +) is an abelian. For the multiplication (·),

one has that (
α
(n)
1 α

(n)
2

)
α
(n)
3 = ((α1α2)α3)

(n) = (α1(α2α3))
(n) = α

(n)
1

(
α
(n)
2 α

(n)
3

)
,

for α(n)
l ∈

∑
n(H)× =

∑
n (H) \

{
0(n)
}

, for all l = 1, 2, 3.
Since the matricial ring Mn(C) is noncommutative, the above associative multiplication is noncom-

mutative. So, the algebraic pair
(∑

n(H)×, ·
)

forms a noncommutative semigroup. Moreover, it has its
multiplication-identity,

1(n) denote
= In ◦ σn ∈ Σn (H) ,

where In is the identity matrix of Mn(C), satisfying

α(n) · 1(n) = (α ◦ In)(n) = α(n) = (In ◦α)(n) = 1(n) ·α(n),

for all α(n) ∈
∑
n(H)×.

It is not hard to check the left-and-right distributiveness of the operations (+) and (·) of (6.6) on∑
n (H), by those of matricial addition and multiplication on M2(C). So, the algebraic triple

∑
n(H) of

(6.7) is a unital ring with its unity 1(n).
Finally, the R-scalar product (6.8) is well-defined on

∑
n(H), because all matrices of M2 (C) and our

q-spectralization σn are over R.

Let α(n) = α ◦ σn ∈
∑
n(H), with α ∈ Mn(C). If α is invertible in Mn(C) (as a matrix), then α(n) is

invertible in
∑
n(H) (as a ring-element) in the sense that: there exists a unique element β(n) = β ◦ σn ∈∑

n(H), such that
α(n)β(n) = 1(n) = β(n)α(n),

in
∑
n(H), where 1(n) = In ◦ σn is the unity of

∑
n(H), i.e., the invertibility of α in Mn(C) implies the

invertibility of α(n) in
∑
n(H); (

α(n)
)−1

=
(
α−1)(n) in Σn (H) , (6.9)

if α−1 exists in Mn (C).

Remark 6.4. Remark that “α(n) is invertible in
∑
n (H)” does not mean α(n) is invertible “on Hn,” as

a function. Indeed, by definition, α(n) is neither injective nor surjective on Hn, implying that it cannot
be invertible on Hn “as a function,” i.e., the invertibility (6.9) on

∑
n (H) is the ring-invertibility on the

noncommutative unital ring
∑
n (H).
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By the invertibility (6.9) on
∑
n (H), one can define the subring Sn(H) by

Sn(H)
def
= {α(n) ∈

∑
n

(H) : α(n) is invertible}. (6.10)

It is not difficult to check that the sub-structure (Sn(H), ·) of this subring Sn(H) of (6.10) forms a non-
abelian group, where (·) is the multiplication (6.6).

Definition 6.5. We call the noncommutative unital ring
∑
n(H) of (6.7), the quaternion-spectral matricial

ring acting on Hn (in short, the q-spectral ring). And all elements of
∑
n (H) are called the quaternion-

matricial functions (in short, q-spectral functions) on Hn. The subring Sn(H) of (6.10) is called the
invertible quaternion-spectral matricial ring (in short, the invertible q-spectral ring). In particular, the
algebraic pair (Sn(H), ·) is said to be the invertible q(uaternion)-spectral (matricial) group.

7. Spectral theoretic properties on
∑

n (H)

In this section, we fix n ∈N, and the corresponding q-spectral ring
∑
n (H). Let

α(n) = α ◦ σ(n) ∈ Σn (H) , with α ∈Mn (C) ,

be a q-spectral function on Hn. Note-and-recall that the q-spectral ring
∑
n (H) is a noncommutative

unital ring over R with the R-scalar product (6.8);(
t, α(n)

)
∈ R× Σn (H)→ tα(n) ∈ Σn (H) ,

where

tα(n) = (tα)(n) = tα ◦ σn in Σn (H) . (7.1)

By (7.1), for any t ∈ R and α(n) ∈
∑
n (H),

α(n) − t · 1(n) = α ◦ σn − t (In ◦ σn) ,

where 1(n) = In ◦ σn ∈
∑
n (H) is the unity of

∑
n (H),

= α ◦ σn+((−t)In ◦ σn)

by (7.1),

= (α− tIn) ◦ σn = (α− tIn)
(n) (7.2)

in
∑
n (H). By (7.2), one can get that

α(n) − t · 1(n) = 0(n) in Σn (H) ,

where 0(n) = On ◦ σn ∈ Σn (H) is the zero element, if and only if

α− tIn = On in Mn (C) , (7.3)

because the q-spectralization σn is a nonzero function on Hn.

Proposition 7.1. Let α(n) ∈ Σn (H), and let t ∈ R. Then

α(n) − t · 1(n) = 0(n) in Σn (H) ,

if and only if

α− tIn = On ⇐⇒ α = tIn in Mn (C) . (7.4)
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Proof. The relation (7.4) holds by (7.2) and (7.3).

Now, consider the equality,

α− tIn = On in Mn (C) , (7.5)

in the relation (7.4), both “globally” and “locally” as a function on Cn. Note that

t = t+ 0i ∈ R ⊂ C in (7.5).

Of course, the equality (7.5) holds globally, if and only if the relation (7.4) holds by Proposition 7.1.
Meanwhile, the equality (7.5) holds “locally” on Cn in the sense that: there exists a subspace E of Cn =
σ (Hn) such that

α− tIn = On ”on E, ” in Cn,

if and only if
α(w) = tw, for all w ∈ E,

if and only if t ∈ R is contained in the spectrum of α,

spec (α) = {λ ∈ C : ∃w ∈ Cn, s.t., ff (w) = ˘w} ,

or
spec (α) = {λ ∈ C : α− λIn is not invertible on Cn} ,

in C, if and only if t is an eigenvalue of α.
Indeed, t ∈ spec (α), if and only if the nonempty eigenspace Et of t is well-determined in Cn as a

subspace, if and only if
α (w) = tw⇐⇒ (α− tIn) (w) = 0n, ∀w ∈ Et,

if and only if

α− tIn = On ”on Et, ” (7.6)

”locally” in Cn. So, different from the global relation (7.4), we have the following local result.

Theorem 7.2. Let α(n) ∈
∑
n (H) be a q-spectral function and t ∈ R. Then there exists non-zero H-vector

w ∈Hn such that (
α(n) − t · 1(n)

)
(w) = 0n in Hn,

if and only if

t ∈ spec (α) , and σn(w) ∈ Et, (7.7)

where Et is the eigenspace of an eigenvalue t.

Proof.

(⇐) By (7.4), if α = tIn in Mn (C), then the identity,

α(n) − t · 1(n) = (α− tIn)
(n) = 0(n),

holds in the q-spectral ring
∑
n (H) (globally), i.e., for all w ∈Hn, the equality in (7.7) holds. Remark

that if α = tIn in Mn (C), then
spec (α) = {t}, and Et = Cn.

It shows that if the relation (7.4) holds, then

t ∈ spec (α) , and Et = Cn = σn (Hn) ,
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and hence, the equality of (7.7) holds as a special case. Generally, if t ∈ spec (α) and σn (w) ∈ Et, then
the equality of (7.7) holds true by (7.6). Therefore, if there exists w ∈Hn, such that

t ∈ spec (α) , and σn(w) ∈ Et,

then the equality of (7.7) holds.

(⇒) Now, assume that either
t /∈ spec (α) , or σn (w) /∈ Et.

First, assume that t /∈ spec (α). Then there does not exist w ∈ Cn, such that

α (w) = tw⇐⇒ (α− tIn) (w) = 0n,

implying that
(α− tIn)

(n) (w) 6= 0n, for all w ∈Hn,

by (7.2), since σn (w) ∈ Cn in Hn, for all w ∈ Hn, i.e., if t /∈ spec(α), then the equality of (7.7) does not

hold. Suppose now that w denote
= σn(w) /∈ Et, for w ∈Hn. Then

α (w) 6= tw⇐⇒ (α− tIn) (w) 6= 0n,

in Cn, if and only if
(α− tIn)

(n) (w) =
(
α(n) − t · 1(n)

)
(w) 6= 0n,

in Cn, because w ∈Hn is assumed to be non-zero, i.e., if σn(w) /∈ Et, then the equality of (7.7) does not
hold. Thus, if the equality of (7.7) holds for non-zero w ∈Hn, then

t ∈ spec (α) , and σn(w) ∈ Et.

The above theorem characterizes the existence of nonzero H-vectors w ∈Hn satisfying(
α(n) − t · 1(n)

)
(w) = 0n on Hn,

by the spectral property of α on Cn, by (7.7).

8. Fixed-point theorems in
∑

n (H)

In this section, motivated by the main results of Section 7, we study fundamental fixed-point theorems
on the n-dimensional vector space Hn over the quaternions H induced by q-spectral functions of the q-
spectral ring

∑
n (H), and characterize them in terms of the usual spectral theory onMn (C). Throughout

this section, we fix n ∈N, and the corresponding q-spectral ring
∑
n (H). Recall that, in a usual (Hilbert-

space-operator) spectral theory, a matrix α ∈Mn (C) is self-adjoint, if

α∗ = α in Mn (C) ,

where α∗ is the adjoint (or, the conjugate transpose) of α; and it is said to be a projection, if it is both
self-adjoint and idempotent, i.e.,

α∗ = α = α2 in Mn (C) ;

and a matrix α is normal, if
α∗α = αα∗ in Mn (C) ;

and α is an isometry, if
α∗α = In in Mn (C) ,

etc. And the corresponding spectral properties are well-characterized (e.g., [7, 8]).
Here, we focus on the cases where the matrix parts α ∈Mn (C) of q-spectral functions α(n) = α ◦σn ∈∑
n (H) are self-adjoint, or projections on Cn.
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Definition 8.1. A q-spectral function α(n) = α ◦ σn ∈
∑
n (H) is said to be self-adjoint (or, a projection),

if the matrix part α ∈Mn (C) is self-adjoint (resp., a projection) on Cn.

Similar to Definition 8.1, one can define normal elements, or isometries on the q-spectral ring
∑
n (H)

by the (usual) spectral properties of the matrix parts of q-spectral functions of
∑
n (H).

For instance, the unity 1(n) = In ◦ σn, and the zero element 0(n) = On ◦ σn of
∑
n (H) are not only

self-adjoint, but also projections in
∑
n (H), because the identity matrix In and the zero matrix On of the

matricial ring Mn (C) are both self-adjoint and projections on Cn.

Proposition 8.2. Let α(n)
l = αl ◦ σn ∈

∑
n (H), for l = 1, 2.

(1) If αl ∈Mn (C) are self-adjoint and tl ∈ R, for l = 1, 2, then t1α
(n)
1 + t2α

(n)
2 is self-adjoint in

∑
n (H).

(2) If αl ∈Mn (C) are self-adjoint for l = 1, 2, satisfying

α1α2 = α2α1 in Mn (C) ,

and if t ∈ R, then tα(n)
1 α

(n)
2 is self-adjoint in

∑
n (H).

(3) If αl ∈Mn (C) are projections for all l = 1, 2, and if

α1α2 = On = α2α1 in Mn (C) ,

then α(n)
1 +α

(n)
2 is a projection in

∑
n (H).

(4) If αl ∈Mn (C) are projections for all l = 1, 2, and if

α1α2 = α2α1 in Mn (C) ,

then α(n)
1 α

(n)
2 and α(n)

2 α
(n)
1 are projections in

∑
n (H).

Proof. Under the conditions of (1), the matrix α = t1α1 + t2α2 is self-adjoint, i.e.,

α∗ = t1α
∗
1 + t2α

∗
2 = t1α1 + t2α2 = α,

in Mn (C), implying the self-adjointness of α. Therefore, the q-spectral function,

α(n) = (t1α1 + t2α2) ◦ σn = t1α
(n)
1 + t2α

(n)
2 ,

is self-adjoint in
∑
n (H) by (6.6) and (6.8). So, the statement (1) holds.

If the conditions of (2) hold in Mn (C), then the matrix β = tα1α2 is self-adjoint, i.e.,

β∗ = tα∗2α
∗
1 = tα2α1 = tα1α2 = β,

in Mn (C), implying the self-adjointness of β. So, the corresponding q-spectral function,

β(n) = (tα1α2) ◦ σn = tα
(n)
1 α

(n)
2 ,

is self-adjoint in
∑
n (H) by (6.6) and (6.8). Thus, the statement (2) holds.

Under the condition of (3), the matrix γ = α1 +α2 ∈Mn (C) is a projection, since

γ∗ = α∗1 +α
∗
2 = α1 +α2 = γ,

and
γ2 = α2

1 +α1α2 +α2α1 +α
∗
2 = α1 +α2 = γ,

on Cn. So, the corresponding element,

γ(n) = (α1 +α2) ◦ σn = α
(n)
1 +α

(n)
2 ,
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is a projection in
∑
n (H) by (6.6) and (6.8). It shows that the statement (3) holds.

Finally, if the conditions of (4) hold, then the matrix θ = α1α2 ∈Mn (C) is a projection because

θ∗ = α∗2α
∗
1 = α2α1 = α1α2 = θ,

and
θ2 = α1α2α1α2 = α2

1α
2
2 = α1α2 = θ,

on Cn. So, the ring element,
θ(n) = (α1α2) ◦ σn = α

(n)
1 α

(n)
2 ,

is a projection in
∑
n (H) by (6.6) and (6.8). Therefore, the statement (4) holds.

Recall now that every matrix of Mn (C) has its nonempty spectrum as a subset of C (e.g., [7, 8]). Note
that, in particular, a self-adjoint matrix α ∈Mn (C) has its nonempty spectrum,

spec (α) ⊂ R, in C.

Note also that a projection β ∈Mn (C) has its spectrum satisfying

spec (β) ⊆ {0, 1} , in C,

(e.g., see [7, 8]). So, by (7.7), we obtain the following fixed-point theorem.

Theorem 8.3. For any arbitrary “self-adjoint” q-spectral function α(n) ∈
∑
n (H), there always exist t ∈ R, and

w ∈Hn such that

α(n) (w) = tσn (w) in Cn. (8.1)

Proof. Suppose a q-spectral function α(n)=α◦σn is self-adjoint in
∑
n(H), i.e., the matrix part α ∈Mn (C)

is self-adjoint. Then it has its spectrum spec (α), contained in R. Suppose t ∈ spec (α). Then, as a C-
quantity, this R-quantity t has its eigenspace Et in Cn. For an eigenvector v ∈ Et, one can have H-vector
w ∈Hn, satisfying

σn (w) = v,

by (4.3). Therefore, by (7.7), (
α(n) − t · 1(n)

)
(w) = 0n,

if and only if
α(n) (w) = t · 1(n) (w) = tσn (w) ,

in Cn. Therefore, the equality (8.1) holds.

Theorem 8.3 shows that the self-adjointness of a q-spectral function α(n) ∈
∑
n (H) guarantees the

fixed-point formula (8.1).

Theorem 8.4. Let α(n) = α ◦ σn ∈
∑
n (H) be a “nonzero” projection. Then there exists w ∈Hn such that

α(n) (w) = σn (w) in Cn. (8.2)

Proof. Let α(n) ∈
∑
n (H) be a nonzero projection, i.e., the matrix part α ∈Mn (C) is a nonzero projection

on Cn, satisfying
spec (α) ⊆ {0, 1} in Cn.

In particular, the nonzero-ness of α implies that

1 ∈ spec (α) .

So, by (8.1), there exists w ∈Hn, such that

α(n) (w) = 1 · σn (w) in Cn,

showing the relation (8.2).
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Theorem 8.4 provides a special example of the fixed-point theorem (8.1) under self-adjointness on∑
n (H). However, it also fully characterizes the nonzero-projection-property on

∑
n (H) in terms of the

fixed-point formula (8.2).
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