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Abstract

The main scenario of the present paper is to introduce certain approach of variables by setting the structural behavior of
fractional inequalities. Some new structural properties will be established concerning them.
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1. Introduction

In recent years, the importance of integral inequalities play a vital appearance in the mathematics,
sciences and technology (MST). It has achieved a significant development from last few decades and can
be seen in [1, 16, 19] and many others. The structure of fractional calculus has a first hand knock over
the area presuming the way out of various tools in MST; in order to attract more closeness towards the
subject and to determine its utility, various kinds of statements and uses of fractional derivatives have
been expanded. It was Riemannan Liouville and Letnikov who are most familiar in this direction of
study as can be seen in [5, 9-11, 15, 18, 20, 22], and etc.

It was Caputo who put together the classical sense of the Riemannan Liouville fractional derivative
for solving fractional differential equations with applied approaches called initial conditions. Further
Letnikov has synthesized the notion of fractional calculus given by Leibniz in a new way.

Quite recently, the author in [8] introduced new notion on probability theory by involving fractional
calculus in to play and extended the classical results. More structures and its various applications to real
world problems which includes differential equations, fluid mechanics, biomathematics etc can be found
in [2, 3, 7, 14, 24], and many others. We now present some definitions as follows.

Definition 1.1 ([16, 17, 21]). We define Riemann Liouville fractional integral of order k > 0 for a continu-
ous map g(v) on [c, d], which is given by

Ralg(v)l = L JV(V— s)<lg(s)ds fora<v<d,

where I'(k) = fgo e Vv*~ldv is called as the Gamma function and 3 =, 7%g(v) = g(v).
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It is important to see that for k > 0, we have following well known properties:
RE RE[B(V)] = RETCg(v)]
and
RERL (V)] = R RE(V)L.

Definition 1.2 ([25]). For k > 0 and 1 < p < oo, define £, x(c,d) by

o=

d
lolle,y(c.a) = U Q(V)Ipvkdv] < 00
C

which is called as Lebesgue measurable real-valued maps g on [c, d].

Definition 1.3 ([25]). For c € Rand 1 < p < oo, define X¥ (¢, d) by

d P
dv
lllxr = U v°g(v)lp] <00
c v

called as the real-valued Lebesgue measurable functions g on [c, d] and for the choice of p = oo, consider
it as

lgllx =ess sup [veg(v)l.
cLvsd

Remark 1.4. By choosing ¢ = ugl with 1 < p < oo, u >0, then X¥(c, d) coincides to £, k(c,d) and also

forc=(+) with1 <p < oo, then XF(c, d) is reduced to the classical space £P(c, d).
p P p

Definition 1.5. ([25]) Let g € £; s with k > 0. The generalized Riemann-Liouville fractional integrals
+Rey and _RTp with order k > 0, h > 0 are given by

e ;
RESg(u) = (S—I—)J (Wt — vt IySg(v)dv foru > c.

e bI'(x)
Throughout the paper, the random variable X will be abbreviated by r.v..

C

Definition 1.6. For a r.v. X having a positive p.d.f. g on [c, d], then, for s > 0 and ¢ < v < d, the fractional
expectation function with order « is given as

1-5 ru
EY ol = RGuglo)] = 1 [ e ) g

Definition 1.7. We define the fractional expectation of positive real valued function of order « for a r.v.
X —E(X) as

(s+1)7h v

£ J (st — v )5 — E(X))vig(v)dv.

x-e 0, (W = TR
It is important to note that for u = d, the above definitions take the following form.

Definition 1.8. For a r.v. X having a positive p.d.f. g on [c, d]. For s > 0, the fractional expectation function
of order « is given as

(@5t —vst 5 1ystlg(y)dy.

1_x
E&,K(u —d) = w Jd

bI"(x)

C
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Definition 1.9. Let E(X) represents the mathematical expectation of X be a r.v. with a positive p.d.f. g
defined on [c, d]. Then, for s > 0 and ¢ < v < d, we define the fractional variance function of order « as

(s+1)'7% J“
bI'(x)
Definition 1.10. If u = d, then we define the fractional variance function of order k as
(s+1)' s Jd
bI'(x)
Now choosing k and s differently and s, we have the following remark.
Remark 1.11.

O (W) = +REFIu—EX))*F(w)] = (s =y v —E(X)v g (v)dv.

C

0%,y (= d) = (@ = vt (v —E(0)Pvg(v)dv.

C

(D1) Choosing s = 0 and k = 1 = b in Definition 1.6, we get Ex 11 = E(X) as the classical expectation of
r.v. X.

(D2) Choosing s = 0 and k = 1 = b in Definition 1.8, we get G%C,l = 0%(X) = IS(V —E(X))?g(v)dv as the
classical variance of r.v. X.

(D3) Choosing k =1, we get the well known result R*[f(d)] = 1.

2. Main results

This portion will be dealing with the new generalization of results of continuous r.v. with fractional
integral order.

Theorem 2.1. For an r.v. X having a positive p.d.f. g on [c,d], then forall c <v < d, k = 0and s > 0, we have
(i) the inequality

LR IGW]I0% e (W (ES g ) (W)

(s + 1)1*%(us+1 _ Cs+1)%
MNk+1)

2
< llgl R - (R )) )

holds provided g € Lylc, dl; and
(ii) the inequality

(us+1 o Cs+1)2 <+R:,’; [LL]) (2.1)

N[ =

+ R [9(w)] 0% (W (Ex g (30, (W) <
holds.

Proof. We first consider the function $ for v,m € (c,v), c<v <d

Bv,m) = (m ) - 5 (m)) (m(v) - :oz(m)) 2)
. . (5—0—1)17% (us“—v”l)%il . .
where k > 0. Now multiplying (2.2) by Ne3) vp(v) on both sides, where the map p is
p:lc,dl = RT with v € (¢, u). We now integrate obtained identity from c to u, we see
(s+1)' 5 Ju +1 +1y5 1
—_— usTt —v* v)$H(v, m)vidv
o). ¢ ) T p)S v, m)

= RE[pH192(v)] — H2(m) 4 REs [p51 (V)] 2.3)

— H1(M)+ RZEpH2(V)] + H1(m)H2(m)+ REp [p(w)].
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S+1)17K (us+l_ms+1)%71

Now multiplying (2.3) by ( N3 p(m)m?® for m € (c,u), and then integrating over
(c,u) with respect to m, we see

2—2k ru ru K K
(Shtrlz)(K) J J (et =y ) T ) (v )p(m) s (v, m)vim* dvdm (2.4)

=2 R (VLR 09192 (V)] = 24 REp [pH1 (V)] R [p$H2(V)].

Now in (2.4), choosing p(v) = g(v) and (V) = H2(v) = v —E(X), v € (¢, d), we see

(S + 1)2_2K JV Ju (us+1 o Vs+1)§_1 (us+1 o ms+l)%_1 g(v)g(m) (Vs+1 o ms+1)zvsms dvdm
b2z (k) Je Je (2.5)

— 2, RS lg(w)] RS lg(w) (s — E(X))) — 2L RS g (w) (us ! — E(X))2).

But on the other hand, we see

2—2k ru ru K_ Kk_
(sh—g[‘lZ)(K) J J (us—l—l _Vs—l—l)E 1 (us+1 -~ ms+1) 51 g(v)g(m) (Vs+1 - mSH)szmsdvdm
(& Cc
. « (2.6)
(S—i—l)liﬁ (us+1_cs+1)h )
< 2 K,Sr 2s+27 K,S .
<lgll (2 SRR -2 (LR )
Thus, from (2.5) and (2.6), we get (i) part of this result.
For part (ii), we have
1 222 ruou K_ _
(S + ) J J (us+1 _ Vs+1) p 1 (uerl _ ms+1) k—1 g(t)g(m) (vs+1 _ ms+1)2 vimsdvdm
h2r2(x)  Je Je
2 2 (2.7)
< sup (Vs—i—l _ ms+1) [+R§,’;g(u)]z — (us—l—l _ Cs—l—l) [+R§:;9(uﬂ2
v,me([c,ul
Consequently, from (2.5) and (2.7), we get (2.1) as desired. O

Corollary 2.2. For k > 0 and b = 1, choose a continuous r.v. X with p.d.f. g defined in [c, d]. Then,
(i) the inequality

ds+1 _ Cs—|—1
(k)

(as+l— Cs+1)2'<+2 |:(ds+1 —cst1) K+1]2>

0% o —E . <llgl?
T~ B <9l M(k+1)T(k+3) Mk+1)

holds if g € Loolc,dl and s > 0;
(ii) the inequality

dstl s+l ) 1 (ds+1 _ Cs+1)2p<
- - —F32 <
F(K) X,k,b X,k ( FZ(K) >

N |

holds for any s > 0.
Deduction 2.3. By choosing x =1 = h and s = 0 in (i) of Corollary 2.2, we get the first part of Theorem 1 in [4].
Deduction 2.4. By choosing k =1 =t and s = 0 in (ii) of Corollary 2.2, we get the last part of Theorem 1 in [4].

Theorem 2.5. Let X be a r.v. with p.d.f. g : [c,d] — R*. Then
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(i) forallc <u<d, k>0,A>0ands >0, we have

+ R [g(w)]oF 5 p (W) ++ Ré/’; [g(w)]lo% 6 (1) = 2(Ex—g (20),k,0 (W) (Exx—E (20),0,5 (W)

(s+1)1—%(us+1_cs+1)%
<lgll (B T
A K
(s+D)Th T —ehi «
+ |!9||i0< FATT) SR =2 (LRE) (L RYS )

holds for g € Llc, d]; and
(ii) the inequality

L RESIG(VI0F A (1) 4 RYp g (w)]o% (1) = 2(Ex—g (20),k (W) (B (20),0 (W)
< (vt — st (+R§j§ [V]) (+922,’§ [u])

holds forany c <u<d, k >20,A>0and s > 0.

(2.8)

Proof. From (2.2), we can write

(s4+1)27 %A

e Ju J': (us+1 _ Vs—o—l)%*l (VS+1 _ ms+1)§71 p(V)p (M) (v, m)vimS dvdm

C

— o RSP RS 919, (w)] 41 RS [p (W] RS 519, (w)] @9)

LR H (W] 4 RS [ (W] — RS9, (W] 4 RES [pH1 ()],

For u € (c,d), we insert p(u) = g(u), H:1 (1) = H(u) = us+t! —E(X) in (2.9), we see

_ KFA
=%

(s+1)

u v . .
hZ]"(K)rO\)J J (us+l _VS+1)E 1 (us+l _ms—l—l) p—1 g(V)g(m) (VS+1 —mSH)zvsdeydm

C C

= L RESIg(u) RN [g(u) (ust! — E(x))z]
(2.10)

+4 332‘,’; [g(u)]+iR:’§ [g(u) (u3+1 B E(DC))Z}
—2: R [g(w) (T —E(X))]+ Ry [g(u) (W —E(X)) ] .

But we also see

__K+A
2 5

oy . | et e et ey

(S + 1)17K(u5+1 _ Cs+1)|<
< llgllZ o
MNk+1)
(S 4 1)17)\(us+1 _ Cs+1))\
TA+1)

LRES 2] 2 (+ng§ [u]) ( LRy [u])].

Consequently, this with equation (2.10) proves the part (i) of the result.
To establish (ii), we will make use of the fact that

2
sup ‘(Verl o s+1)} — (us+1 . s+1)2

v,me(c,ul

m (¢
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and get
K+A
(S + 1)27% Ju Ju s+1 s+1 %*1 s+1 s+1 %*1 s+1 s+1\2 K,S As
— — < — R R .
2r(<)F(A) Je Je e A A C (w =) { e R )+ Rep
Hence, this equation along with (2.10) proves the part (ii), i.e., (2.8) is established. O

Deduction 2.6. By choosing ¢ = d of Theorem 2.5, we receive Theorem 2.1.

Theorem 2.7. Let X be a r.v. having p.d.f. g : [c,d] — R*. Then

YIS,

2
+ R [g(w)]0o% 5 (1) — (Ex—g(x0),(W)* < = (a5 _cs+1)2 <+gg§:§ [u]) (2.11)

foreveryc<u<d, k>0ands > 0.

Proof. From Theorem 3.1 of [23], one can write

2l 1 2
Rl R e - (b | < § (25 Or- m.

Now for u € [c,d], we choose p(u) = g(u) and $H;(u) = us*!' —E(X), then M = d5*! —E(X) and m =
¢St —E(X). Thus, from (2.11), we can have

0< 5 lg(wl R [alw) (! —E0)°] - (4255 [gtu) (w! —E)?])’

2
<3 (4R Tt (a7 - i)

This yields that

1 2 2
+ R g% (W) — (Exxg (), (W) < 7 (a7 =57 ( +Reh [u]> '

B

This completes the proof. O
Now choosing u = d, we have following Corollary.
Corollary 2.8. For a p.d.f. g of r.v. X, we have

s+1 _ .s+1 %_1
(@ —c*)

(k) 0% iy (W) — (Ex—g (20, (W)* <

fork >0and s > 0.
Deduction 2.9. By choosing x =1 = b in Corollary 2.8 we have Theorem 2 of [4].
Theorem 2.10. Let X be a r.v. having p.d.f. g : [c,d] — R*. Then
LREgoR A (W) + 1RV [g)]0% (W) +2 (5T —E(X)) (457! —E(X)), RESIg(W)] - RY5 [g(w)]
< (ST + a3 —2E(X)) (1 REE[g(W)] (Exc—g(o0)a (W) ++ 333,’5 [g(wW)] (Ex_g(x),c(W))

foreveryc<u<d k>0 A>0ands > 0.
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Proof. From Theorem 2.5 of [23], we can write

m“[p( )R O]+ R ()] R ot (W)
RS o] R o (W]

< [(M SRES W] — R %1 (]) (R (W] = m RS () (2.12)
2
+ (LR W] — m R W] ) (M Ry — R [pm(un)] .
Choosing p(ut) = g(u) and H7(u) = v$+ —E(X) in (2.12) yields

[ RESlg(W] R [glw) (wit! (x))} + RG] R [glw) (u ! —E(X)7]
2.8 [9(w) (w =B O0)] 4R [g(w) (! —EQ0)])
< [ MRS lg(w) — az“[g(u) (us+1 E(X)]
x (+ R [glw) (ust! :X)] m R [g(w)])
x (43R5 [9lw) (w1 —E(X)] —m  R¥5lg(w)])

< (MR lglw)] - +:RC;; [gw) (us+1 - E(%J)])]Z~

(2.13)

Now from (2.10) and (2.13) and using the fact that the left hand side of (2.10) is positive, we see

SR 9] (RY: [g(uw) (T —E0)%] +4 R lg(w] R [glw) (ut! —E(X)]
=2 R [g(w) (W —EX)] + Ry [g(w) (W —E(X))]
MR g — RS [glw) (W —E0)] (+RY; [gw) (W —E(X0)] —m  RY5[g(w)])
x (4255 [glw) (w1 —E()] —m  REplg(w))
A,

x (MRl — RS [gw) (us™! —E(0)]).
This yields us
SRES 9] SRS [9w) (u — ()] ++ RS9 +RES [9(uw) (u ! —E(2))]
< M( SRS g(w)] (Ex_e o a(w) ++ B2 [gluw) (Ex_E(X),K(u))D

+ m( LRSS IGW] (Ex—goa (W) +4 RY5 [g(w) (EDCE(DC),K(LL))]>-

Using this in the values of M and m from Theorem 2.7 and by simple calculations we get the result. [
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