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1. Introduction

The notion of Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [7] as a common
abstraction of several lattice theoretic and ring theoretic generalizations of a Boolean algebra. An ADL is
an algebra (A,∧,∨, 0) of type (2, 2, 0) which satisfies all the axioms of a distributive lattice except possibly
the commutativity of the operations ∨ and ∧. It is known that, in an ADL, the commutativity of ∨ is
equivalent to that of ∧ and also to the right distributivity of ∨ over ∧. The class of ADLs with pseudo-
complementation was introduced in [8] and proved it is equationally definable. In [5], we introduced the
notion of a-pseudo-complementation on an ADL A by fixing an arbitrary element a in A as the natural
generalization of the notion of pseudo-complementation on an ADL. In [4], we introduced the concepts
of a-dense element and a-maximal filter in an ADL A and studied these in connection with a-pseudo-
complementation on A. Here, we introduced the concept of a-minimal prime ideal of an ADL A and
characterized these in terms of a-maximal filter, relative a-annihilator, a-dense element, and a-pseudo
complementation. Mainly, we considered the spaces hP(a) and minhP(a) of prime ideals containing the
element a in A and a-minimal prime ideals respectively, together with the hull-kernel topologies, and
proved certain properties of these.

2. Preliminaries

In this section, we recall certain definitions, results and notations which will be needed later on are
presented.
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Definition 2.1 ([7]). An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an Almost Distributive Lattice
(ADL) if, for any x,y, z ∈ A,

(1) x∧ (y∨ z) = (x∧ y)∨ (x∧ z);
(2) (x∨ y)∧ z = (x∧ z)∨ (y∧ z);
(3) (x∨ y)∧ x = x;
(4) (x∨ y)∧ y = y;
(5) x∨ (x∧ y) = x;
(6) 0 ∧ x = 0.

Example 2.2 ([7]). Let X be a non-empty set and a0 ∈ X. For any a,b ∈ X, define,

a∧ b =

{
b, if a 6= a0,
a0, if a = a0,

and a∨ b =

{
a, if a 6= a0,
b, if a = a0.

Then (X,∧,∨,a0) is an ADL and this is called discrete ADL.

Definition 2.3 ([7]). Let A be an ADL. For any x,y ∈ A, define x 6 y iff x = x ∧ y or, equivalently
x∨ y = y, then 6 is a partial ordering on A.

Proposition 2.4 ([7]). Let A be an ADL. For any x,y, z ∈ A, we have the following:

(1) x∧ y = x⇔ x∨ y = y;
(2) x∧ y = y⇔ x∨ y = x;
(3) x∧ y = y∧ x whenever x 6 y;
(4) ∧ is associative in A;
(5) x∧ y∧ z = y∧ x∧ z;
(6) (x∨ y)∧ z = (y∨ x)∧ z;
(7) x∧ y = 0⇔ y∧ x = 0;
(8) x∨ (y∧ z) = (x∨ y)∧ (x∨ z);
(9) x∧ (x∨ y) = x, (x∧ y)∨ y = y and x∨ (y∧ x) = x;

(10) x 6 x∨ y and x∧ y 6 y;
(11) x∧ x = x and x∨ x = x;
(12) 0 is the identity for the operation ∨ (that is; x∨ 0 = x = 0 ∨ x);
(13) 0 is the zero element for the operation ∧ (that is; x∧ 0 = 0);
(14) if x 6 z, y 6 z, then x∧ y = y∧ x and x∨ y = y∨ x.

An element m of an ADL A is called maximal, if m is a maximal element in the poset (A,6). It is
known that, m is maximal⇔ m∧ x = x⇔ m∨ x = m for all x ∈ A. In any discrete ADL, every non-zero
element is maximal.

An ADL A is said to be associative ADL, if the operation ∨ on A is associative. Throughout this paper
A denotes an ADL with a maximal element in which ∨ is associative; that is (x∨ y)∨ z = x∨ (y∨ z) for
all x,y, z ∈ A.

For any x,y ∈ A, with x 6 y, the set [x,y] = {z ∈ A : x 6 z 6 y} is a bounded distributive lattice with
respect to the operations induced by those on A. If in addition [x,y] is a Boolian algebra then A is called
a relatively complemented ADL and, in this case, the operation ∨ is associative. Every discrete ADL is
relatively complemented.

A non-empty subset I of A is said to be an ideal (filter) of A, if x∨ y ∈ I(x∧ y ∈ I) and x∧ a ∈
I(a∨ x ∈ I) whenever x,y ∈ I and a ∈ A. If I is an ideal (filter) of A and x,y ∈ A, then x∧y ∈ I⇔ y∧ x ∈
I(x∨ y ∈ I⇔ y∨ x ∈ I). For any S ⊆ A, the smallest ideal of A containing S is called the ideal generated
by S in A and is denoted by (S]. If S = {x}, we simply write (x] for ({x}]. We have that for any S ⊆ A and



CH. S. S. Raj, K. R. Rao, S. N. Rao, J. Nonlinear Sci. Appl., 14 (2021), 212–221 214

x ∈ A, (S] = {(
n∨
i=1

si)∧ a : n > 0, si ∈ S and a ∈ A}, and (x] = {x∧ a : a ∈ A}={y ∈ A : x∧ y = y}, (x]

is called the principal ideal generated by x. For any x ∈ A, [x) = {a∨ x : a ∈ A}={y ∈ A : y∨ x = y} is
called the principal filter generated by x. For any S ⊆ A, the set S∗ = {x ∈ A : x∧ s = 0 for all s ∈ S} is
always an ideal of A and is called an annihilator of S in A. Note that S∗ = (S]∗. For any x ∈ A, we have
(x]∗ = {x}∗ = {y ∈ A : x∧ y = 0}. A proper ideal (filter) P of A is said to be prime if, for any x,y ∈ A,
x∧ y ∈ P(x∨ y ∈ P) implies either x ∈ P or y ∈ P. A prime ideal (filter) of an ADL is called a minimal
prime ideal (filter) if there is no other prime ideal (filter) properly contained in it. A proper ideal (filter)
M of A is said to be maximal if, there is no proper ideal (filter) N of A such that M ⊂ N.

Proposition 2.5 ([7]). For any subset P of A, P is a prime filter of A iff A-P is a prime ideal of A.

Proposition 2.6 ([7]). Let A be an ADL, I an ideal (filter) of A and x ∈ A-I. Then there exists a prime ideal (filter)
P of A such that I ⊆ P and x /∈ P.

Proposition 2.7 ([7]). Every prime ideal (filter) of A contains a minimal prime ideal (filter) .

Proposition 2.8 ([7]). Every maximal ideal (filter) is prime ideal (filter).

Proposition 2.9 ([7]). An ideal P of A is a minimal prime ideal iff A-P is a maximal filter, and a filter Q of A is a
minimal prime filter iff A-Q is a maximal ideal.

Definition 2.10 ([7]). An equivalence relation θ on an ADL A = (A,∧,∨, 0) is said to be a congruence if
θ is compatible with ∧ and ∨ on A; that is, for any a,b, c,d ∈ A, (a,b) and (c,d) ∈ θ⇒ (a∧ c, b∧ d) ∈
θ and (a∨ c, b∨ d) ∈ θ. If θ is a congruence on A, then the set x/θ = {y ∈ A : (x,y) ∈ θ} is called the
congruence class of x in A corresponding to θ.

Proposition 2.11 ([7]). For any a ∈ A, θa = {(x,y) ∈ A×A : a∨ x = a∨ y} is a congruence relation on A.

Proposition 2.12 ([7]). For any ideal I of A, the relation θI = {(x,y) ∈ A×A : a∨ x = a∨ y for some a ∈ I}
is a congruence on A and is the smallest congruence on A containing I× I. Moreover, for any a ∈ A, θ(a] = θa.
Also, 0/θI=I and this is the only congruence class of θI which is an ideal of A. This congruence is called ideal
congruence.

Definition 2.13 ([8]). A unary operation ∗ on A is called a pseudo complementation on A if, for any
x,y ∈ A,

(1) x∧ y = 0⇒ x∗ ∧ y = y;
(2) x∧ x∗ = 0;
(3) (x∨ y)∗ = x∗ ∧ y∗.

Definition 2.14 ([6]). For any elements x and a in A, the relative a-annihilator of x is defined by 〈x,a〉 =
{y ∈ A : x∧ y ∈ (a]}. Note that 〈x,a〉 is an ideal of A.

Definition 2.15 ([5]). Let a be an arbitrary fixed element in A. Then a unary operation x 7→ x ∗ a on A is
called an a-pseudo-complementation on A, if for any x,y ∈ A;

(1) 〈x,a〉 = (x ∗ a];
(2) (x∨ y) ∗ a = (x ∗ a)∧ (y ∗ a).

Definition 2.16 ([4]). Let a be a fixed arbitrary element in A. Then an element x ∈ A is said to be a-dense,
if 〈x,a〉 ⊆ (a] (and hence 〈x,a〉 = (a]). Da denotes the set of all a-dense elements in A.

Definition 2.17 ([4]). Let a be an arbitrary fixed element in A. Then a filter F of A is said to be a-maximal,
if F is maximal with respect to the property of not containing a.

Proposition 2.18 ([4]). For any filter F of A and a ∈A-F, there exists a-maximal filter containing F.
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Proposition 2.19 ([4]). A filter F of A is a-maximal filter iff a /∈ F and for every x /∈ F, 〈x,a〉 ∩ F 6= φ.

Proposition 2.20 ([4]). Every a-maximal filter of A is a prime filter.

Proposition 2.21 ([4]). The following are equivalent:

(1) x ∈ Da;
(2) x ∗ a ∼ a;
(3) (x ∗ a) ∗ a = a ∗ a.

Proposition 2.22 ([4]). For every x ∈ A, x∨ (x ∗ a) ∈ Da.

3. a-minimal prime ideals

Definition 3.1. Let A be an ADL and a ∈ A. Then a prime ideal P of A containing a is called a-minimal
prime ideal if there is no prime ideal of A containing a and properly contained in P.

The aim of this article is to study some characterizations and properties of a-minimal prime ideals.
First we have the following as an application of Zorn’s lemma which allow us to denote the existence of
a-minimal prime ideals.

Theorem 3.2. Let Q be a prime ideal of A containing an element a in A. Then there exists an a-minimal prime
ideal M of A such that M ⊆ Q.

Corollary 3.3. For a ∈ A, the intersection of all a-minimal prime ideals of A is (a].

Proposition 2.6 and Theorem 3.2 yield the following theorem.

Theorem 3.4. For any x and a ∈ A, 〈x,a〉 =
⋂
{M :M is a-minimal prime ideal and x /∈M}.

Theorem 3.5. Following statements are equivalent for any prime ideal P of A containing an element a in A.

(1) P is a-minimal prime ideal;
(2) A-P is a-maximal filter;
(3) 〈x,a〉 * P, for each x ∈ P.

Proof.

(1)⇒(2) Suppose P is a-minimal prime ideal. Then, clearly A-P is a filter of A and a /∈ A-P. Let F be a
filter of A such that A-P ⊆ F and a /∈ F. Then, by Proposition 2.6, there exists a prime filter Q of A such
that F ⊆ Q and a /∈ Q. By Proposition 2.5, A-Q is a prime ideal of A and a ∈ A-Q. Since A-P ⊆ F ⊆ Q,
we get A-Q ⊆ P. Since P is a-minimal prime ideal, we get A-Q = P and hence A-P = Q. This implies that
A-P = F. Thus A-P is a-maximal filter.

(2)⇒(3) Let x ∈ P. Then x /∈ A-P. By (2) and Proposition 2.19, 〈x,a〉 ∩ (A-P) 6= φ which implies that
〈x,a〉 * P.

(3)⇒(1) Let Q be a prime ideal of A such that a ∈ Q ⊆ P. Now,

x ∈ P ⇒ 〈x,a〉 * P (by (3))
⇒ there exists y ∈ A such that x∧ y ∈ (a] and y /∈ P
⇒ y /∈ Q and x∧ y ∈ Q (since a ∈ Q⇔ (a] ⊆ Q)
⇒ x ∈ Q (since Q is prime).

Therefore P ⊆ Q and hence Q = P. Thus P is a-minimal prime ideal.

Another characterization of a-minimal prime ideals in connection with a-pseudo complementations
is given below.
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Theorem 3.6. Let x 7→ x ∗ a be an a-pseudo complementation on A and P a prime ideal of A containing a ∈ A.
Then P is a-minimal prime ideal iff x ∗ a /∈ P for each x ∈ P.

Proof. For any x ∈ A, we have that x ∗ a ∈ P ⇔ 〈x,a〉 ⊆ P. Now, the theorem follows from Theorem
3.5.

Definition 3.7. Let P be a prime ideal of A and a ∈ P. Define, a(P) = {y ∈ A : y∧ x ∈ (a] for some x ∈
A-P}.

Some basic properties of a(P) are stated below.

Lemma 3.8. For any prime ideal P of A and a,b ∈ A, we have the following.

(1) a(P) =
⋃

x∈A−P

〈x,a〉.

(2) a(P) is an ideal of A and a ∈ a(P) ⊆ P.
(3) a∧ b(P) = b∧ a(P) = a(P)∩ b(P).
(4) a∨ b(P) = b∨ a(P) and a(P)∨ b(P) ⊆ a∨ b(P).
(5) a 6 b⇒ a(P) ⊆ b(P).
(6) a ∼ b⇒ a(P) = b(P).
(7) a is maximal iff a(P) = A.

Theorem 3.9. Let P be a prime ideal of A and a ∈ P. Then P is a-minimal prime ideal iff a(P) = P.

Proof. Suppose P is a-minimal prime ideal and x ∈ P. Then 〈x,a〉 * P and hence there exists y /∈ P such
that x∧ y ∈ (a]; that is x ∈ a(P). Therefore P ⊆ a(P). By Lemma 3.8 (2), a(P) ⊆ P. Hence a(P) = P.

Conversely, suppose that a(P) = P. Let x ∈ P. Then x ∈ a(P) and hence x∧ y ∈ (a] for some y /∈ P.
This implies y ∈ 〈x,a〉 and y /∈ P. Hence 〈x,a〉 * P. Thus, by Theorem 3.5, P is a-minimal prime ideal.

Theorem 3.10. Let x 7→ x ∗ a be an a-pseudo complementation on A and a ∈ M ⊂ A. Then the following
statements are equivalent:

(1) A-M is a-maximal filter;
(2) A-M is a prime filter and x∨ (x ∗ a) ∈ A-M for each x ∈ A;
(3) M is a-minimal prime ideal;
(4) M is a prime ideal, and x ∈M⇒ (x ∗ a) ∗ a ∈M;
(5) M is a prime ideal and M∩Da = φ.

Proof.

(1)⇒(2) Assume (1). Then A-M is a prime filter of A (by Proposition 2.20). To prove the second part : if
x /∈ A-M, then 〈x,a〉 ∩ (A-M) 6= φ (by (1)). Choose y ∈ 〈x,a〉 ∩ (A-M). Then y ∈ 〈x,a〉=(x ∗ a] so that
(x ∗ a)∧ y = y ∈ A-M and so x ∗ a ∈ A-M. Therefore x∨ (x ∗ a) ∈ A-M.

(2)⇒(3) Suppose the condition (2) is satisfied. Then M is a prime ideal. Let P be a prime ideal of A such
that a ∈ P⊂M. Then select x ∈M such that x /∈ P. Now x∧ (x ∗ a) ∈ (a] ⊆ P. Since P is prime and x /∈ P,
we get x ∗ a ∈ P. So that x∨ (x ∗ a) ∈M; a contradiction to our supposition. Thus M is a-minimal prime
ideal of A.

(3)⇒(4) Assume(3). Then M is a prime ideal. If x∈ M, then x ∗ a /∈ M (by Theorem 3.6). Now (x ∗ a)∧
((x ∗ a) ∗ a) ∈ (a] ⊆M. Since M is prime, we get (x ∗ a) ∗ a ∈M.

(4)⇒(5) Assume the condition (4). If M∩Da 6= φ and choose x ∈M∩Da, then (x ∗ a) ∗ a ∈M
(
by (4)

)
,

and (x ∗ a) ∗ a = a ∗ a (by Proposition 2.21). Hence (x ∗ a) ∗ a is maximal since a ∗ a is maximal. So that
a ∗ a ∈M and hence M=A; a contradiction. Thus M∩Da = φ.

(5)⇒(1) Assume (5). Then A-M is a prime filter and a /∈A-M. To prove A-M is a-maximal filter: let
x /∈ A-M. Then x∨(x ∗a) is a-dense element in A (by Proposition 2.22); that is, x∨ (x ∗a) ∈ Da and hence
x∨ (x ∗ a) ∈ A-M. As A-M is prime filter and x/∈A-M, we get x ∗ a ∈ A-M. Therefore, x ∗ a ∈ 〈x,a〉 ∩ (A-
M) so that 〈x,a〉 ∩ (A-M) 6= φ. By Proposition 2.19, A-M is a-maximal filter.
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4. Hull space

Let H be a non-empty set of prime ideals of A. For any S ⊆ A, let H(S) = {P ∈ H : S * P}. Then it can
be easily proved that the class {H(S) : S ⊆ A} is a topology on H. This topology is called the hull-kernel
topology. For any S ⊆ A, we have H(S) =

⋃
s∈S

H(s), where H(s) = H({s}) and hence the class {H(s) : s ∈ A}

is a base for the hull-kernel topology on H. The closed set H-H(S) is called the hull of S in H and is
denoted by hH(S). Note that hH(S) = {P ∈ H : S ⊆ P}. Also, for any U ⊆ H, the kernel of U is defined
by k(U) =

⋂
{P ∈ H : P ∈ U}. The hull of any S ⊆ A is closed in H, and for any U ⊆ H the kernel k(U)

of U is an ideal of A. The name hull-kernel topology is justified by the reason being that for any U ⊆ H,
U = hH(k(U)), where U is the closure of U with respect to the hull-kernel topology on H. It can be easily
seen that, if S ⊆ A and I = (S], then H(S) = H(I) and hence every open set in H is of the form H(I) for
some ideal I of A and every closed set in H is of the form hH(I) for some ideal I of A.

Let P denote the set of all prime ideals of A. Then the set P together with the hull-kernel topology
is called the prime spectrum of A and it is denoted by Spec(A). Let Pm denote the set of all minimal
prime ideals of A. This set together with the subspace topology relative to the hull-kernel topology on
Spec(A) is called the minimal prime ideal space of A and is denoted by min Spec(A). Throughout this
paper whenever we talk about the topology on P or any H ⊆ P we mean the hull-kernel topology. For
an arbitrary fixed element a ∈ A, we define hP(a) = {P ∈ P : a ∈ P}. Note that hP(a) is the hull of {a}
in Spec(A). In this section we study some basic properties of the set hP(a). The following is a straight
forward verification.

Lemma 4.1. Let H = hP(a). Then the following hold for any x,y in A.
(1) H(x) = H(a∨ x) = H(x∨ a).
(2) H(x)∩H(y) = H(x∧ y) = H(y∧ x).
(3) H(x)∪H(y) = H(x∨ y) = H(y∨ x).
(4) (x] ⊆ (y]⇒ H(x) ⊆ H(y).
(5) H(x) ⊆ H(y)⇔ (a∨ x] ⊆ (a∨ y].
(6) H(x) = H(y)⇔ (a∨ x] = (a∨ y].
(7) H(x) = φ⇔ x ∈ (a]⇔ a∧ x = x.
(8) H(a) = φ = H(0).
(9) H(x) = H⇔ a∨ x is maximal.

(10) H(x) ⊆ H(y)⇒ (x] ⊆ (y] whenever a ∈ (y].
(11) H(x) = H(y)⇔ x ∼ y whenever a ∈ (x]∩ (y].

Theorem 4.2. Let H = hP(a) and Y ⊆ H. Then Y is compact open iff Y=H(x) for some x ∈ A.

Proof. Suppose that Y=H(x) for some x ∈ A. Then, Y is open. Let {H(s) : s ∈ S} be a basic open cover of Y,
where S ⊆ A. Then,

Y ⊆
⋃
s∈S

H(s) =
⋃
s∈S

H(a∨ s) = H(T) = H((T ]),

where T = {a∨ s : s ∈ S}. If x /∈ (T ], then, by Proposition 2.6, there exists a prime ideal P of A such
that (T ] ⊆ P and x /∈ P so that P ∈ H(x) and P /∈ H((T ]) a contradiction. Therefore x ∈ (T ] and hence,

x = (
n∨
i=1

(a∨ si))∧ y for some y ∈ A and s1, s2, . . . , sn ∈ S. Now, P ∈ H(x) ⇒ x /∈ P ⇒
n∨
i=1

(a∨ si) /∈ P

⇒ P ∈ H(
n∨
i=1

(a∨ si)) =
n⋃
i=1

H(a∨ si) =
n⋃
i=1

H(si). Therefore Y ⊆
n⋃
i=1

H(si). Thus Y is compact.

Conversely, suppose that Y is compact open. Since Y is open, Y=
⋃
s∈S

H(S),S ⊆ A. By compactness of Y,

Y=
n⋃
i=1

H(si) = H(
n∨
i=1

si) = H(s), where s =
n∨
i=1

si.

Note that, for any x ∈ A, the interval [x,∞) = {y ∈ A : x 6 y < ∞} is an ADL under the induced
operations ∧ and ∨ with x as its smallest element.
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Theorem 4.3. Let H = hP(a). Then the following statements are equivalent:

(1) H is a Haussdorff space;
(2) H is a T1-space;
(3) P is maximal ideal for each P ∈ H;
(4) P is a-minimal prime ideal for each P ∈ H;
(5) a(P) = P for all P ∈ H;
(6) [a,∞) is a relatively complemented ADL.

Proof.

(1)⇒(2) It is clear.

(2)⇒(3) Let P ∈ H. By(2), {P} is closed in H and hence {P} = {P}; that is hH(P) = hH(k({P})) = P which
implies that there is no prime ideal containing a and P, other than P it self. Thus P is maximal ideal.

(3)⇒(4) It is trivial.

(4)⇒(5) It follows by Theorem 3.9.

(5)⇒(6) Let b and x ∈ A such that a 6 x 6 b. Put J = 〈x,a〉. If b /∈ (x]∨ J, then by Proposition 2.6, there
exists a prime ideal P of A such that b /∈ P and (x]∨ J ⊆ P so that P ∈ H. By (5), a(P) = P. Since x ∈ P,
x ∈ 〈y,a〉 for some y ∈A-P. Therefore y∧ x ∈ (a] and hence x∧ y ∈ (a], where y ∈ A-P. This implies that
y ∈ 〈x,a〉 so that y ∈ P; a contradiction. Therefore b ∈ (x]∨ J. Then b = (x∧ f)∨ g for some f ∈ A and
g ∈ J. As g ∈ 〈x,a〉, x∧ g ∈ (a] so that a∧ x∧ g = x∧ g. Clearly a 6 a∨ g 6 b. Now,

x∧ (a∨ g) = (x∧ a)∨ (x∧ g) = a∨ (a∧ x∧ g) = a∨ (a∧ g) = a

and
x∨ b = x∨

(
(x∧ f)∨ g

)
= (x∨ (x∧ f))∨ g = x∨ g.

Then, x∨ (a∨ g) = (x∨ a)∨ g = x∨ g = x∨ b = b. Therefore a∨ g is the complement of x in [a,b] and
hence [a,b] is a Boolean algebra. Thus [a,∞) is a relatively complemented ADL.

(6)⇒(1) Let P ∈ H and Q is an ideal of A such that P ⊂ Q. Choose x ∈ Q such that x /∈ P. Let y ∈ A.
Then a∨ x and a∨ y ∈ [a,∞). Since the ADL [a,∞) is relatively complemented, there exists z ∈ [a,∞)
such that (a∨ x)∧ z = a and (a∨ x)∨ z = (a∨ x)∨ (a∨ y). Since x /∈ P, a∨ x /∈ P. Also (a∨ x)∧ z ∈ P.
Since P is prime we get z ∈ P. Then (a∨ x)∨ z ∈ Q which implies a∨ y ∈ Q. Now y = (a∨ y)∧ y ∈ Q.
Therefore Q = A. Hence P is a maximal ideal of A. So every element in H is a maximal ideal and hence
a-minimal prime ideal of A. Let P,Q ∈ H such that P 6= Q. Then P * Q and Q * P since P and Q are
maximal. Choose an element x ∈ P such that x /∈ Q. As x ∈ P, 〈x,a〉 * P (by Theorem 3.5) and hence
there exists y /∈ P such that x∧ y ∈ (a]; that is, a∧ x∧ y = x∧ y. Now H(y) and H(x) are open sets in H
containing P and Q, respectively and

H(x)∩H(y) = H(x∧ y) (by Lemma 4.1 (2))
= H(a∧ x∧ y) = H(a)∩H(x∧ y) = φ∩H(x∧ y) = φ (by Lemma 4.1 (8)).

Thus H is a Haussdorff space.

5. The space of a-minimal prime ideals

In this section, we consider the space of all a-minimal prime ideals of A, which will be denoted by
min hP(a). We fix the following notations.

H = hP(a);
Hm = {M :M is a-minimal prime ideal of A};
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Hm(S) = H(S)∩min hP(a) = {M ∈ Hm : S *M};
Hm(x) = H(x)∩min hP(a) = {M ∈ Hm : x /∈M};

also, hHm(S) = {M ∈ Hm : S ⊆M};
and hHm(x) = {M ∈ Hm : x ∈M}.

Theorem 5.1. For each x ∈ A, Hm(x) is closed and open in min hP(a).

Proof. By Theorem 3.5, it follows that Hm(x) ∩Hm
(
〈x,a〉

)
= φ and Hm(x) ∪Hm

(
〈x,a〉

)
= Hm. Hence

Hm(x) = Hm - Hm
(
〈x,a〉

)
; so that Hm(x) is closed.

Corollary 5.2. min hP(a) is a Haussdorff space.

Note that, for any a ∈ A, the relation defined by ηa = {(x,y) ∈ A×A : 〈x,a〉 = 〈y,a〉} is a congruence
relation on A.

The following is a straight forward verification and it gives us a set of relations between relative
a-annihilators of A and the basic open (closed) sets of min hP(a).

Lemma 5.3. For any x,y, z ∈ A, the following hold.

(1) Hm(x) = hHm(〈x,a〉).
(2) Hm(〈x,a〉) = hHm(x).
(3) hHm(x) = hHm

(
〈x,a〉∗

)
.

(4) Hm(x) ⊆ Hm(y)⇔ 〈y,a〉 ⊆ 〈x,a〉.
(5) hHm(x) ⊆ hHm(y)⇔ 〈x,a〉 ⊆ 〈y,a〉.
(6) Hm(x) = Hm(y)⇔ (x,y) ∈ ηa.
(7) 〈z,a〉 = 〈x,a〉 ∩ 〈y,a〉 ⇔ hHm(z) = hHm(x)∩ hHm(y).
(8) 〈x,a〉∗ = 〈y,a〉 ⇔ hHm(x) = hHm(〈y,a〉).

Now we give a characterization of a-dense elements.

Theorem 5.4. Da = {x ∈ A : hHm(x) = φ}.

Proof. Let x ∈ Da. Then hHm(x) = Hm(〈x,a〉) = Hm((a]) = Hm(a) = φ. Now,

hHm(x) = φ⇒ Hm(〈x,a〉) = φ
⇒ 〈x,a〉 ⊆M for all M ∈ Hm
⇒ 〈x,a〉 ⊆

⋂
M∈Hm

M = (a] (by Corollary 3.3)

⇒ x is a-dense; so that x ∈ Da.

Now, for any congruence θ on A, the quotient A/θ = {x/θ : x ∈ A} is an ADL under the operations ∧

and ∨ on A/θ defined by x/θ∧ y/θ = (x∧ y)/θ and x/θ∨ y/θ = (x∨ y)/θ; and its zero element is 0/θ.

Theorem 5.5. Let J be an ideal of A and A/θJ be the quotient of A by an ideal congruence θJ. Then the map

f(I) = I/θJ = {x/θJ : x ∈ I}

is an isomorphism of the lattice of all ideals of A containing J onto the lattice of all ideals of A/θJ and this induces
a homeomorphism from hP(J) onto Spec(A/θJ).
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Proof. Since the natural map x 7→ x/θJ of A onto A/θJ is a homomorphism (in fact, it is an epimorphism),
one can easily verify that for any ideal I of A containing J, I/θJ is an ideal of the ADL A/θJ. Hence f is
well defined. For any ideals P and Q containing J of A, it is clear that

P ⊆ Q⇒ P/θJ ⊆ Q/θJ ⇒ f(P) ⊆ f(Q).

On the other hand, suppose that f(P) ⊆ f(Q). Then

x ∈ P ⇒ x/θJ ∈ P/θJ ⊆ Q/θJ
⇒ x/θJ = y/θJ for some y ∈ Q
⇒ (x,y) ∈ θJ for some y ∈ Q
⇒ a∨ x = a∨ y for some a ∈ J and y ∈ Q
⇒ x = (a∨ x)∧ x = (a∨ y)∧ x ∈ Q

and therefore P ⊆ Q. Hence, P ⊆ Q⇔ f(P) ⊆ f(Q); that is f and f−1 are order homomorphism. To prove
f is onto, let K be an ideal of A/θJ. Put

I = {x ∈ A : x/θJ ∈ K}.

Clearly I is an ideal of A and f(I) = I/θJ = K and hence f is onto. Therefore f : IJ(A) 7→ I(A/θJ) is an
order isomorphism and thus f is an isomorphism.

To prove the second part; we note that, if K is a prime ideal in A/θJ, then there exists a prime ideal P
of A containing J such that f(P) = P/θJ = K. Now, let PA/θJ(K) be an open subset of Spec(A/θJ), where
K is an ideal of A/θJ. Then

f−1(PA/θJ(K)) = {P ∈ hP(J) : f(P) ∈ PA/θJ(K)}

= {P ∈ hP(J) : K * f(P)}
= {P ∈ hP(J) : f

−1(K) * P}
= {P ∈ hP(J) : P ∈ P(f−1(K))}

= hP(J)∩P(f−1(K)),

which is an open subset of hP(J) and hence f is continuous.
Again, let P(I)∩ hP(J) be an open subset of hP(J) where I is an ideal of A. Then,

f(P(I)∩ hP(J)) = {f(P) : f−1(f(P)) ∈ P(I)∩ hP(J)}

= {f(P) : P ∈ P(I)∩ hP(J)}

= {f(P) : I * P and J ⊆ P}
= {f(P) : f(I) * f(P) and 0/θJ = f(J) ⊆ f(P)}
= PA/θJ(f(I)),

and this is an open subset of Spec(A/θJ); so that f−1 is continuous. Hence hP(J) and Spec(A/θJ) are
homeomorphic; that is, hP(J) ∼= Spec(A/θJ).

Now, if J is an ideal of A, then by a minimal prime ideal belonging to J, we mean a minimal element
in the set of all prime ideals of A containing J. In [3], it was proved that, a prime ideal P of A containing
an ideal J is a minimal prime ideal belonging to J iff for each x ∈ P there exists y /∈ P such that x∧ y ∈ J.

For any ideal J of A, let mJA denote the set of all minimal prime ideals belonging to J, and minpJA
denote the space of minimal prime ideals belonging to J equipped with the hull-kernel topology. Then
we have the following Corollaries as a direct consequence of the above theorem.
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Corollary 5.6. minpJA ∼= min Spec(A/θJ).

Corollary 5.7. min hP(a) ∼= min Spec(A/θa).

Theorem 5.8. For any x ∈ A, Hm(x) ∼= min Spec(A/θ〈x,a〉).

Proof. By Corollary 5.6, min Spec(A/θ〈x,a〉) ∼= minp〈x,a〉A = m
〈x,a〉
A . So it sufficies to prove that Hm(x) =

m
〈x,a〉
A . Let M ∈ Hm(x). Then M is a-minimal prime ideal and x /∈M, which implies that 〈x,a〉 ⊆M, so

that M is a minimal prime ideal belonging to 〈x,a〉; that is M ∈ m〈x,a〉
A . On the other hand let M ∈ m〈x,a〉

A ,
then, for any s ∈ M there exists t /∈ M such that s∧ t ∈ 〈x,a〉. Therefore x /∈ M; for if x ∈ M, then
〈x, 〈x,a〉〉 = 〈x,a〉 * M, a contradiction. Thus, for s ∈ M, we have x ∧ t /∈ M and s ∧ x ∧ t ∈ (a],
so that 〈s,a〉 * M. Therefore M is a-minimal prime ideal and x /∈ M; that is M ∈ Hm(x). Hence
Hm(x) = m

〈x,a〉
A .
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