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1. Introduction

The notion of Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [7] as a common
abstraction of several lattice theoretic and ring theoretic generalizations of a Boolean algebra. An ADL is
an algebra (A, /\,V,0) of type (2,2,0) which satisfies all the axioms of a distributive lattice except possibly
the commutativity of the operations \V and /. It is known that, in an ADL, the commutativity of V is
equivalent to that of /A and also to the right distributivity of \V over /\. The class of ADLs with pseudo-
complementation was introduced in [8] and proved it is equationally definable. In [5], we introduced the
notion of a-pseudo-complementation on an ADL A by fixing an arbitrary element a in A as the natural
generalization of the notion of pseudo-complementation on an ADL. In [4], we introduced the concepts
of a-dense element and a-maximal filter in an ADL A and studied these in connection with a-pseudo-
complementation on A. Here, we introduced the concept of a-minimal prime ideal of an ADL A and
characterized these in terms of a-maximal filter, relative a-annihilator, a-dense element, and a-pseudo
complementation. Mainly, we considered the spaces hp(a) and minhp(a) of prime ideals containing the
element a in A and a-minimal prime ideals respectively, together with the hull-kernel topologies, and
proved certain properties of these.

2. Preliminaries

In this section, we recall certain definitions, results and notations which will be needed later on are
presented.
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Definition 2.1 ([7]). An algebra A = (A,/\,V,0) of type (2,2,0) is called an Almost Distributive Lattice
(ADL) if, for any x,y,z € A,

D xA(yVz)=KxAy)V(xAz);
(2) xVy)Az=[xANz)V(y/z);
B) xVy)Ax=x;

) (xVy) Ay =1y;

5) xV (xAy) =x;

6) 0Ax =0

Example 2.2 ([7]). Let X be a non-empty set and ag € X. For any a,b € X, define,

b, if , ,if ,
a/\b:{ ifad and a\/b:{a if a7 do

ag, if a = ay, b, if a = ayp.
Then (X, /\,V, ap) is an ADL and this is called discrete ADL.

Definition 2.3 ([7]). Let A be an ADL. For any x,y € A, define x < y iff x = x Ay or, equivalently
x Vy =y, then < is a partial ordering on A.

Proposition 2.4 ([7]). Let A be an ADL. For any x,y,z € A, we have the following:

(1) x\y=x&xVy=vy,

2 x\y=yexVy=x;

(B) x Ay =y /A x whenever x <y;
(4) /\ is associative in A;

B) x NyNz=yAxANz

6) xVylAz=(yVx)Az

(7) x\y=0yAx=0;

B) xV(yAz) =(xVyA(xVz);
9) xAN(xVy)=x, (x A \y)Vy=yandxV (y/A\x)=x;
(10) x < xVyand x \y <vy;

A1) xAx=xand xVx =x;

(12) 0 is the identity for the operation \/ (that is; x V0 =x =0V x);
(13) 0 is the zero element for the operation /\ (that is; x /N0 = 0);
(14) if x <z, y<z thenx\y=yAxandxVy=yVx

An element m of an ADL A is called maximal, if m is a maximal element in the poset (A, <). It is
known that, m is maximal & mAx =x <& mVx =m for all x € A. In any discrete ADL, every non-zero
element is maximal.

An ADL A is said to be associative ADL, if the operation VV on A is associative. Throughout this paper
A denotes an ADL with a maximal element in which V is associative; that is (x Vy)Vz =xV (yV z) for
all x,y,z € A.

For any x,y € A, with x < y, the set [x,y] ={z € A :x <z <y} is a bounded distributive lattice with
respect to the operations induced by those on A. If in addition [x,y] is a Boolian algebra then A is called
a relatively complemented ADL and, in this case, the operation V is associative. Every discrete ADL is
relatively complemented.

A non-empty subset I of A is said to be an ideal (filter) of A, if xVy € I(x Ay € I) and x N a €
[(aVx € I) whenever x,y € I and a € A. If [ is an ideal (filter) of A and x,y € A, thenx Ay € I & y/Ax €
IxVyeleyVxel) Forany S C A, the smallest ideal of A containing S is called the ideal generated
by S in A and is denoted by (S]. If S = {x}, we simply write (x] for ({x}]. We have that for any S C A and
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xGA,(S]z{(\?sﬂ/\a:n)O, si€Sand a € A}, and (x] ={xANa:ae€ A=y A:xA\y =1y}, (x]

i=1

is called the principal ideal generated by x. Forany x € A, [x) ={aVx:a € Al=sly e A:yVx =y}is
called the principal filter generated by x. For any S C A, the set S* ={x € A: x/\s =0 forall s € S}is
always an ideal of A and is called an annihilator of S in A. Note that S* = (S]*. For any x € A, we have
(xI" ={x}* ={y e A:x/A\y = 0}. A proper ideal (filter) P of A is said to be prime if, for any x,y € A,
x/A\y € P(xVy € P) implies either x € P or y € P. A prime ideal (filter) of an ADL is called a minimal
prime ideal (filter) if there is no other prime ideal (filter) properly contained in it. A proper ideal (filter)
M of A is said to be maximal if, there is no proper ideal (filter) N of A such that M C N.

Proposition 2.5 ([7]). For any subset P of A, P is a prime filter of A iff A-P is a prime ideal of A.

Proposition 2.6 ([7]). Let A be an ADL, 1 an ideal (filter) of A and x € A-1. Then there exists a prime ideal (filter)
P of A such that 1 C P and x ¢ P.

Proposition 2.7 ([7]). Every prime ideal (filter) of A contains a minimal prime ideal (filter) .
Proposition 2.8 ([7]). Every maximal ideal (filter) is prime ideal (filter).

Proposition 2.9 ([7]). An ideal P of A is a minimal prime ideal iff A-P is a maximal filter, and a filter Q of A is a
minimal prime filter iff A-Q is a maximal ideal.

Definition 2.10 ([7]). An equivalence relation 6 on an ADL A = (A,/\,V,0) is said to be a congruence if
0 is compatible with /A and V on A; that is, for any a,b,c,d € A, (a,b) and (c,d) € 0 = (a/A¢c, DAA) €
@ and (aVc, bV d) € 0. If 0 is a congruence on A, then the set x/0 ={y € A : (x,y) € 6} is called the
congruence class of x in A corresponding to 0.

Proposition 2.11 ([7]). Forany a € A, 04 ={(x,y) € Ax A:aV x = a\V y}isa congruence relation on A.

Proposition 2.12 ([7]). For any ideal I of A, the relation 01 = {(x,y) € Ax A :aVx =aVy forsome a € I}
is a congruence on A and is the smallest congruence on A containing 1 x 1. Moreover, for any a € A, 0(q] = 04.
Also, 0/01=I and this is the only congruence class of 01 which is an ideal of A. This congruence is called ideal
congruence.

Definition 2.13 ([8]). A unary operation * on A is called a pseudo complementation on A if, for any
X,y €A,

(1) x \y=0=x*Ny=y;

(2) xA\x* =0;

B) xVuy)* =x*Ay*.

Definition 2.14 ([6]). For any elements x and a in A, the relative a-annihilator of x is defined by (x, a) =
{y € A:x /Ay € (a]}. Note that (x, a) is an ideal of A.

Definition 2.15 ([5]). Let a be an arbitrary fixed element in A. Then a unary operation x — x * a on A is
called an a-pseudo-complementation on A, if for any x,y € A;

(1) (x,a) = (xx*al;
2) xVy)xa=(x*xa)A\(yxa).

Definition 2.16 ([4]). Let a be a fixed arbitrary element in A. Then an element x € A is said to be a-dense,
if (x, a) C (a] (and hence (x, a) = (a]). D4 denotes the set of all a-dense elements in A.

Definition 2.17 ([4]). Let a be an arbitrary fixed element in A. Then a filter F of A is said to be a-maximal,
if F is maximal with respect to the property of not containing a.

Proposition 2.18 ([4]). For any filter F of A and a €A-F, there exists a-maximal filter containing F.
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Proposition 2.19 ([4]). A filter F of A is a-maximal filter iff a ¢ F and for every x ¢ F, (x,a) NF # ¢.
Proposition 2.20 ([4]). Every a-maximal filter of A is a prime filter.

Proposition 2.21 ([4]). The following are equivalent:

(1) x € Dq;
2) x*xa~a;
B) (xxa)xa=ax*a.

Proposition 2.22 ([4]). For every x € A, xV (x*a) € Dq.

3. a-minimal prime ideals

Definition 3.1. Let A be an ADL and a € A. Then a prime ideal P of A containing a is called a-minimal
prime ideal if there is no prime ideal of A containing a and properly contained in P.

The aim of this article is to study some characterizations and properties of a-minimal prime ideals.
First we have the following as an application of Zorn’s lemma which allow us to denote the existence of
a-minimal prime ideals.

Theorem 3.2. Let Q be a prime ideal of A containing an element a in A. Then there exists an a-minimal prime
ideal M of A such that M C Q.

Corollary 3.3. For a € A, the intersection of all a-minimal prime ideals of A is (al.
Proposition 2.6 and Theorem 3.2 yield the following theorem.
Theorem 3.4. Forany x and a € A, (x, a) = (\{{M : M is a-minimal prime ideal and x ¢ M}.

Theorem 3.5. Following statements are equivalent for any prime ideal P of A containing an element a in A.
(1) P is a-minimal prime ideal;

(2) A-Pis a-maximal filter;

(3) (x,a) € P, for each x € P.

Proof.

(1)=(2) Suppose P is a-minimal prime ideal. Then, clearly A-P is a filter of A and a ¢ A-P. Let F be a
filter of A such that A-P C F and a € F. Then, by Proposition 2.6, there exists a prime filter Q of A such
that F C Q and a ¢ Q. By Proposition 2.5, A-Q is a prime ideal of A and a € A-Q. Since A-P C F C Q,
we get A-Q C P. Since P is a-minimal prime ideal, we get A-Q = P and hence A-P = Q. This implies that
A-P =F. Thus A-P is a-maximal filter.

(2)=(3) Let x € P. Then x ¢ A-P. By (2) and Proposition 2.19, (x, a) N (A-P) # ¢ which implies that
(x,a) ¢ P.

(3)=(1) Let Q be a prime ideal of A such that a € Q C P. Now,

xe€P=(x,a) ZP (by (3))
= there exists y € A such that x Ay € (al] and y ¢ P
=y¢QandxN\yeQ (sincecac Q< (a CQ)
=x € Q (since Q is prime).

Therefore P C Q and hence Q = P. Thus P is a-minimal prime ideal. O

Another characterization of a-minimal prime ideals in connection with a-pseudo complementations
is given below.
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Theorem 3.6. Let x — x * a be an a-pseudo complementation on A and P a prime ideal of A containing a € A.
Then P is a-minimal prime ideal iff x + a ¢ P for each x € P.

Proof. For any x € A, we have that xxa € P & (x,a) C P. Now, the theorem follows from Theorem
3.5. O]

Definition 3.7. Let P be a prime ideal of A and a € P. Define, a(P) ={y € A : y/Ax € (a] for some x €
A-P}.

Some basic properties of a(P) are stated below.

Lemma 3.8. For any prime ideal P of A and a,b € A, we have the following.
M aP)= U (xaq.

xEA—P

(2) a(P) is an ideal of A and a € a(P) C P.

() a/Ab(P) =bAa(P)=a(P)Nb(P).

(4) aVDb(P ) bV a(P)and a(P) Vb(P) C aVb(P).
(5) a<b= a(P) Cb(P)

(6) a~b = a(P) =b(P).

(7) ais maximal iff a(P) = A.
Theorem 3.9. Let P be a prime ideal of A and a € P. Then P is a-minimal prime ideal iff a(P) = P.

Proof. Suppose P is a-minimal prime ideal and x € P. Then (x, a) ¢ P and hence there exists y ¢ P such

that x Ay € (al; that is x € a(P). Therefore P C a(P). By Lemma 3.8 (2), a(P) C P. Hence a(P) =P.
Conversely, suppose that a(P) = P. Let x € P. Then x € a(P) and hence x Ay € (a] for some y ¢ P.

This implies y € (x, a) and y ¢ P. Hence (x, a) € P. Thus, by Theorem 3.5, P is a-minimal prime ideal. [

Theorem 3.10. Let x — x x a be an a-pseudo complementation on A and a € M C A. Then the following
statements are equivalent:

(1) A-M is a-maximal filter;

(2) A-M is a prime filter and x \V (x x a) € A-M for each x € A;

(3) M is a-minimal prime ideal;

(4) M is a prime ideal, and x € M = (xxa)*xa € M;

(5) M is a prime ideal and M N Dy = ¢.

Proof.

(1)=(2) Assume (1). Then A-M is a prime filter of A (by Proposition 2.20). To prove the second part : if
x ¢ A-M, then (x,a) N (A-M) # ¢ (by (1)). Choose y € (x,a) N (A-M). Theny € (x, a)=(x * a] so that
(xxa) ANy =y € A-M and so x x a € A-M. Therefore x VV (x x a) € A-M.

(2)=(3) Suppose the condition (2) is satisfied. Then M is a prime ideal. Let P be a prime ideal of A such
that a € PCM. Then select x € M such that x ¢ P. Now x A\ (x * a) € (a] C P. Since P is prime and x ¢ P,
we get xx a € P. So that x V (x * a) € M; a contradiction to our supposition. Thus M is a-minimal prime
ideal of A.

(3)=(4) Assume(3). Then M is a prime ideal. If x¢ M, then x* a ¢ M (by Theorem 3.6). Now (x * a) /A
((x*a)*a) € (a] € M. Since M is prime, we get (x *a) *a € M.

(4)=(5) Assume the condition (4). If MNDq # ¢ and choose x € MNDg, then (x*a)xa € M (by (4)),
and (x * a) x a = a x a (by Proposition 2.21). Hence (x * a) * a is maximal since a * a is maximal. So that
a*a € M and hence M=A; a contradiction. Thus M N D, = ¢.

(5)=(1) Assume (5). Then A-M is a prime filter and a ¢A-M. To prove A-M is a-maximal filter: let
x ¢ A-M. Then xV(x * a) is a-dense element in A (by Proposition 2.22); that is, x V (x * a) € D4 and hence
xV (xxa) € A-M. As A-M is prime filter and x¢A-M, we get x x a € A-M. Therefore, x x a € (x,a) N (A-
M) so that (x, a) N (A-M) # ¢. By Proposition 2.19, A-M is a-maximal filter. O]
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4. Hull space

Let H be a non-empty set of prime ideals of A. For any S C A, let H(S) ={P € H: S ¢ P}. Then it can
be easily proved that the class {H(S) : S C A} is a topology on H. This topology is called the hull-kernel

topology. For any S C A, we have H(S) = |J H(s), where H(s) = H({s}) and hence the class {H(s) : s € A}
seS
is a base for the hull-kernel topology on H. The closed set H-H(S) is called the hull of S in H and is

denoted by h(S). Note that hy(S) ={P € H: S C P}. Also, for any U C H, the kernel of U is defined
by k(U) = (}{P € H: P € U}. The hull of any S C A is closed in H, and for any U C H the kernel k(U)
of U is an ideal of A. The name hull-kernel topology is justified by the reason being that for any U C H,
U = hyy(k(U)), where U is the closure of U with respect to the hull-kernel topology on H. It can be easily
seen that, if S C A and I = (S], then H(S) = H(I) and hence every open set in H is of the form H(I) for
some ideal I of A and every closed set in H is of the form hy(I) for some ideal I of A.

Let IP denote the set of all prime ideals of A. Then the set IP together with the hull-kernel topology
is called the prime spectrum of A and it is denoted by Spec(A). Let IP,, denote the set of all minimal
prime ideals of A. This set together with the subspace topology relative to the hull-kernel topology on
Spec(A) is called the minimal prime ideal space of A and is denoted by min Spec(A). Throughout this
paper whenever we talk about the topology on IP or any H C IP we mean the hull-kernel topology. For
an arbitrary fixed element a € A, we define hp(a) ={P € P : a € P}. Note that hp(a) is the hull of {a}
in Spec(A). In this section we study some basic properties of the set hp(a). The following is a straight
forward verification.

Lemma 4.1. Let H = hp(a). Then the following hold for any x,y in A.

(1) H(x) =H(aVx) =H(xV a).

(2) H(x) N H(y) = H(xAy) = H{y Ax).

(3) H(x) UH(y) = H(x V) = H({y V).

(4) (x] € (yl = H(x) € H(y).

(5) H(x) CH(y) & (aVx] C (aVyl

(6) Hx) =H(y) & (aVx] = (aVyl

7)) Hx) =d e xc (d e aAx=x.

(8) H(a) = ¢ =H(0).

(9) H(x) = H < aV x is maximal.
(10) H(x) € H(y) = (x| C (y] whenever a € (yl.
(11) H(x) = H(y) & x ~y whenever a € (x] N (y].

Theorem 4.2. Let H =hp(a) and Y C H. Then Y is compact open iff Y=H(x) for some x € A.

Proof. Suppose that Y=H(x) for some x € A. Then, Y is open. Let {H(s) : s € S} be a basic open cover of Y,
where S C A. Then,
Y C [ J H(s) = [ HlaVs) = H(T) = H((T]),
seS seS
where T = {aVs :s € S}. If x ¢ (T], then, by Proposition 2.6, there exists a prime ideal P of A such
that (T] C Pand x ¢ P so that P € H(x) and P ¢ H((T]) a contradiction. Therefore x € (T] and hence,

n

n
x=(V (aVsi)) Ay forsomey € A and s1,83,...,5n €S. Now, P e H(x) = x ¢ P = \/ (aVs;i) ¢ P
i=1 i=1
n

n n n

= PeH(V(aVsi))= U H(aVsi) = U H(si). Therefore Y C |J H(si). Thus Y is compact.
i=1 i=1 i=1 i=1

Conversely, suppose that Y is compact open. Since Y is open, Y= |J H(S),S C A. By compactness of Y,

sES
n n

n
Y=J H(si) = H(V si) = H(s), where s = \/ s;. O]
i=1 i=1 i=1
Note that, for any x € A, the interval [x,00) ={y € A : x <y < oo} is an ADL under the induced
operations /\ and V with x as its smallest element.
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Theorem 4.3. Let H = hp(a). Then the following statements are equivalent:

(1) H is a Haussdorff space;

(2) His a Ty-space;

(3) P is maximal ideal for each P € H;

(4) P is a-minimal prime ideal for each P € H;
(5) a(P)=Pforall P € H;

(6) la,o00) is a relatively complemented ADL.

Proof.

(1)=(2) Itis clear.

(2)=(3) Let P € H. By(2), {P} is closed in H and hence {P} = {P}; that is hy;(P) = hy(k({P})) = P which
implies that there is no prime ideal containing a and P, other than P it self. Thus P is maximal ideal.
(3)=(4) It is trivial.

(4)=(5) It follows by Theorem 3.9.

(5)=(6) Letband x € A such that a < x <b. Put] = (x,a). If b ¢ (x] V], then by Proposition 2.6, there
exists a prime ideal P of A such that b ¢ P and (x] V] C P so that P € H. By (5), a(P) = P. Since x € P,
x € (y, a) for some y €A-P. Therefore y Ax € (a] and hence x Ay € (a], where y € A-P. This implies that

y € (x,a) so that y € P; a contradiction. Therefore b € (x] V]. Then b = (x /\f) VV g for some f € A and
geJ. Asge (x,a), x/\g € (a] sothataAx/\g=x/Ag. Clearly a < aV g <b. Now,

xN\(aVgl=xANa)VxAg)=aV(aAxANg)=aV(aAg)=a
and
xVb :x\/((x/\f)\/g) =xVxAf)Vg=xVag.

Then, xV (aVg) = (xVa)Vg=xVg=xVDb=b. Therefore aV g is the complement of x in [a, b] and
hence [a, b] is a Boolean algebra. Thus [a, c0) is a relatively complemented ADL.

(6)=(1) Let P € H and Q is an ideal of A such that P C Q. Choose x € Q such that x ¢ P. Lety € A.
Then aVx and aVy € [a,00). Since the ADL [a, o0) is relatively complemented, there exists z € [a, c0)
such that (aVx)Az=aand (aVx)Vz=(aVx)V(aVy). Sincex ¢ P, aVx¢&P. Also (aVx)/\zeP.
Since P is prime we get z € P. Then (a V x) V z € Q which implies aVy € Q. Now y = (aVy) Ay € Q.
Therefore Q = A. Hence P is a maximal ideal of A. So every element in H is a maximal ideal and hence
a-minimal prime ideal of A. Let P,Q € H such that P # Q. Then P ¢ Q and Q ¢ P since P and Q are
maximal. Choose an element x € P such that x ¢ Q. As x € P, (x,a) € P (by Theorem 3.5) and hence
there exists y ¢ P such that x Ay € (a]; thatis, a Ax Ay =x/Ay. Now H(y) and H(x) are open sets in H
containing P and Q, respectively and

H(x) "H(y) = H(xAy) (by Lemma 4.1 (2))
=H(aAxAy)=H(a)NH(xAy)=dNH(XxAy)=¢ (by Lemma 4.1 (8)).

Thus H is a Haussdorff space. O

5. The space of a-minimal prime ideals

In this section, we consider the space of all a-minimal prime ideals of A, which will be denoted by
min hp(a). We fix the following notations.

H = hp(a);
Hm ={M: M is a-minimal prime ideal of A};
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Hm(S) =H(S)Nmin hp(a) =M € H, : SZ M};
Hin(x) =H(x)Nmin hp(a) ={M € Hin : x € M};
also, hyy, (S) =M € Hp: ST M},
and hy, (x) ={M € Hy : x € M}

Theorem 5.1. For each x € A, H(x) is closed and open in min hp(a).

Proof. By Theorem 3.5, it follows that Hm (x) N Hm ((x,a)) = ¢ and Hm(x) UHm({x,a)) = Hmy. Hence
Hp(x) = Hip - Hm((x, a)); so that H,, (x) is closed. O

Corollary 5.2. min hyp(a) is a Haussdorff space.

Note that, for any a € A, the relation defined by nq ={(x,y) € A x A: (x,a) = (y, a)} is a congruence
relation on A.

The following is a straight forward verification and it gives us a set of relations between relative
a-annihilators of A and the basic open (closed) sets of min hp(a).

Lemma 5.3. For any x,y,z € A, the following hold.

(1) Hm(x) =hp,, ((x, a))

(2) Hm(<X, (l)) = hHm (x)

(3) h,, (x) =hpy, ((x,@)%)

(4) Hm(x) € Hm(y) & (y,a) C (x, q).

(5) hu,, (x) € hu, (y) < (x,a) C (y, a).

(6) Hm(x) =Hm(y) & (x,y) €na.

(7) <Z/ O.> = <X/ a)n <U; (l> < hHm(Z) = hHm (X) N h—Hm (U)
®) (x,a)* =(y,a) & hu,, (x) = hn,, (Y, a)).

Now we give a characterization of a-dense elements.
Theorem 5.4. D, ={x € A :hy, (x) = ¢}
Proof. Let x € Dq. Then hyy, (x) = Hm((x, a)) = Hm((a]) = Hm(a) = ¢. Now,

hi,, (x) = ¢ = Hm({x,a)) =
= (x, >ngrallMEH

ﬂ M = (a] (by Corollary 3.3)
MéEH

= x is a-dense; so that x € D.
O

Now, for any congruence 6 on A, the quotient A/0 = {x/0 : x € A} is an ADL under the operations /\
and V on A/0 defined by x/0 Ay/0 = (x A\y)/0 and x/0 Vy/0 = (x Vy)/6; and its zero element is 0/0.

Theorem 5.5. Let | be an ideal of A and A /0y be the quotient of A by an ideal congruence 0y. Then the map
f(I) = 1/9] :{X/GI x €1}

is an isomorphism of the lattice of all ideals of A containing | onto the lattice of all ideals of A/O} and this induces
a homeomorphism from hp(]) onto Spec(A/0j).
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Proof. Since the natural map x — x/0j of A onto A/0; is a homomorphism (in fact, it is an epimorphism),
one can easily verify that for any ideal I of A containing ], I/0; is an ideal of the ADL A/0;. Hence f is
well defined. For any ideals P and Q containing J of A, it is clear that

P C Q = P/G] - Q/e] = f(P) - f(Q)
On the other hand, suppose that f(P) C f(Q). Then

x€P=x/0;€P/0; C Q/0
= x/0j =y/0j for somey € Q
= (x,y) € 05 for some y € Q
=aVx=aVyforsomeac]andy € Q
=x=(aVx)Ax=(aVy)AxeQ

and therefore P C Q. Hence, P C Q « f(P) C f(Q); that is f and f~! are order homomorphism. To prove
f is onto, let K be an ideal of A/0;. Put

[={xecA:x/0; € KL

Clearly I is an ideal of A and f(I) = I/6j = K and hence f is onto. Therefore f : Jj(A) — J(A/0j) is an
order isomorphism and thus f is an isomorphism.

To prove the second part; we note that, if K is a prime ideal in A/0j, then there exists a prime ideal P
of A containing | such that f(P) = P/0; = K. Now, let P Ao, (K) be an open subset of Spec(A/07), where
K is an ideal of A/0y. Then

1P se,(K)) ={P € hp(]) : f(P) € PA/GJ( )}
={Pehp(J): KL f(P
={Pehp(]): f (K )szP}
={Pehp(]): P e P(f '(K))}
=hp()) NP(f1(K)),

which is an open subset of hp(]) and hence f is continuous.
Again, let IP(I) N hp(]) be an open subset of hp(]) where I is an ideal of A. Then,

f(P(1) Nhp(])) = {f(P) : £ (f(P)) € P(I) Nhp(])}
={f(P): P e P(I) nhp(])}
—{f(P):1¢ Pand ] C P}
={f(P) : f(I) € f(P) and 0/65 = f(]) C f(P)}

and this is an open subset of Spec(A/0y); so that f~1 is continuous. Hence hp(]) and Spec(A/ 0y) are
homeomorphic; that is, hp(]) = Spec(A/0y). O

Now, if | is an ideal of A, then by a minimal prime ideal belonging to ], we mean a minimal element
in the set of all prime ideals of A containing J. In [3], it was proved that, a prime ideal P of A containing
an ideal | is a minimal prime ideal belonging to ] iff for each x € P there exists y ¢ P such that x Ay € J.

For any ideal ] of A, let m), denote the set of all minimal prime ideals belonging to J, and minp/ A
denote the space of minimal prime ideals belonging to ] equipped with the hull-kernel topology. Then
we have the following Corollaries as a direct consequence of the above theorem.
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Corollary 5.6. minp/ A = min Spec(A/0y).
Corollary 5.7. min hp(a) = min Spec(A/04).

Theorem 5.8. For any x € A, Hy(x) = min Spec(A/0(x q))-

Proof. By Corollary 5.6, min Spec(A/0y q)) = minp{*®A = m{*. So it sufficies to prove that Hyp (x) =
m%’w. Let M € Hy (x). Then M is a-minimal prime ideal and x ¢ M, which implies that (x,a) C M, so

(x,a) (x,a)

that M is a minimal prime ideal belonging to (x, a); thatis M € m""’. On the other hand let M € m "™/,
then, for any s € M there exists t ¢ M such that s At € (x,a). Therefore x ¢ M; for if x € M, then
(x,(x,a)) = (x,a) £ M, a contradiction. Thus, for s € M, we have x At ¢ M and s A\x At € (d],
so that (s,a) ¢ M. Therefore M is a-minimal prime ideal and x ¢ M; that is M € Hp(x). Hence

Hp (x) = m®, 0
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