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Abstract
In this paper, an SIQR-Epidemic transmission model of the non-Markovian infection process and quarantine process in

a heterogeneous complex network is established, in which the infection rate and quarantine rate are related to infection age.
Next, we use the method of characteristics to transform the model into an integro-differential equation and derive the epidemic
threshold of the model. Finally, we focus on the impact of three different infection or quarantine time distributions on the disease
transmission and show that infection or quarantine time distribution has a significant effect on the disease dynamics.
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1. Introduction

Mathematical model plays an important role in understanding the spread of infectious diseases. It is
mainly used to study the spread and control of infectious diseases [11]. Classic infectious disease models
of Susceptible-Exposed-Infectious-Recovered (SEIR) were proposed as early as the 20th century [1], and
became the basic model of studies on the numerous infectious diseases spreading. Where Exposed (E)
stands for latent period, a period in which a susceptible shows no symptoms after infection.

Currently, many epidemic models with latent periods have been studied [5, 10, 21, 22]. Liu et al.
[9] proposed an SEIRS epidemic model based on scale-free networks. They assumed that the active
contact number of each vertex in the model was constant or proportional to its degree, and obtained
its epidemic threshold respectively by analytical method. Zhu et al. proposed a generalized epidemic
model of a complex heterogeneous network in [24]. In order to explain the simulation results on the
network theoretically, the epidemic dynamics was analyzed mathematically using the method of mean-
field approximation. Further, they studied the stability of the disease-free equilibrium and the endemic
equilibrium. Liu et al. [8] discussed the SEIR model of new epidemic with discrete delay in complex
networks. And the basic reproduction number R0 of the model was given. Zhang et al. [19] established a
stochastic SEIR epidemic dynamic model with migration and human awareness in complex networks.
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In fact, many diseases have a latent period. For example, the latent period of epidemic cholera is about
1-3 days, diphtheria 2-4 days, scarlatina 2-5 days, COVID-19 5-6 days, chincough 7-10 days, poliomyelitis
7-14 days, measles 10-11 days, hepatitis B virus 100 days, HIV/AIDS 9-10 years and so on [9]. Therefore,
in the early days of the COVID-19 outbreak, many researchers studied it using the SEIR model [14, 23].
Radulescu et al. [15] constructed and analyzed the adaptability of specific dynamic compartments and
epidemic parameters for COVID-19 transmission in age-heterogeneous communities to traditional SEIR
epidemic models. He et al. [4] built a SEIR epidemic model of COVID-19 based on general control
strategies, such as hospitals, quarantine and external input.

Since infectious with COVID-19 do not develop symptoms during the latent period, we cannot quaran-
tine them. Therefore, the infectivity and quarantine may depend on the time elapsed since infection (also
called infection age). At present, many models with infection age have been established [6, 7, 20]. Cator
et al. [2] considered the SIS model on an arbitrary network, which took into account non-exponential
distributions during infection and recovery and established criteria for calculating epidemic thresholds.
Röst et al. [16] proposed the generalized mean-field and pairwise model for non-Markovian SIR epidemic
model. Meanwhile, it obtained the pairwise reproduction number and the general expression for the final
size of this model . In addition, it also noted that distributions with the same mean but smaller variance
led to epidemics that grew faster initially.

In order to better describe the dynamics of disease, we will model the spread of disease in hetero-
geneous networks. Chen et al. [3] took into account that not only could nodes be in states S and I, but
also they belong to different connectivity classes k and built a mean-field equations which was degree-
dependent. They showed that basic reproduction number and the disease dynamics relied not only on the
network structure, but also on an age-dependent factor. Miller [12, 13] and Volz [18] provided effective
ways which were based on the generating functions to describe the spread of disease in heterogeneous
networks. Sherborne et al. [17] extended the edge-based compartment model [12, 13] to the case where
the transmission and recovery process of infectious diseases were driven by a general independent prob-
ability distribution. They calculated the final epidemic size of this system, and strictly proved that the
edge-based compartmental model and the message passing model were equivalent in the general inde-
pendent transmission and recovery process.

In this paper, based on the Volz network SIR model [18], quarantine node were introduced to construct
the network SIQR model, in which both the infection process and the quarantine process are related to
infection age. This article focuses more on the effects of the infection time or the quarantine time dis-
tribution on the disease dynamics. The remainder of this paper is organized as follows. In Section 2,
we established an SIQR-Epidemic transmission model for the non-Markovian infection process and quar-
antine process in a heterogeneous complex network. We derive the epidemic threshold of the model in
Section 3. In Section 4, a wealth of numerical simulations has been given to study the effects of differ-
ent infection or quarantine time distributions (Gamma distribution, Uniform distribution, and Weibull
distribution) on the disease dynamics. Finally, conclusions and discussions are given in Section 5.

2. The SIQR epidemic model with infection age

In this section, we will establish an SIQR-epidemic spreading model with infection age in a complex
network. Firstly, we introduce the epidemic propagation mechanism.

2.1. Epidemic propagation mechanism

In this paper, the nodes are divided into four groups: susceptible (S), infectious (I), quarantine (Q),
or recovered (R). We use S, I, Q, and R to denote the fraction of nodes in the sets S, I, Q, and R,
respectively. And i(t,a) is introduced as the fraction of the density of infected nodes with respect to
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infection age a at time t, so we have I(t) =
∫∞

0 i(t,a)da. In addition, they satisfy the normalization
condition: S(t) + I(t) +Q(t) + R(t) = 1.

The SIQR epidemic spreading process is shown in Figure 1.

Figure 1: SIQR spreading process.

Moreover, the SIQR epidemic spreading rules are summarized as follows. (1) When a susceptible node
comes into contact with an infectious node, the probability that a susceptible node becomes an infectious
node is λ(a), that is, the infectious rate. (2) An infectious node may become a recovered node directly
with probability µ, or it can become a quarantine node with probability ρ(a) and then a recovered node
with probability ω.

Since the infection process and the quarantine process are considered non-Markovian, we assume that
cumulative distribution function are F1(a) and F2(a), probability density functions are f1(a) and f2(a),
associated survival functions are ξ1(a) = 1 − F1(a) and ξ2(a) = 1 − F2(a). According to the definition of
literature [6, 16, 20], hazard functions are obtained as

λ(a) = −
ξ̇1(a)

ξ1(a)
=
f1(a)

ξ1(a)
, ρ(a) = −

ξ̇2(a)

ξ2(a)
=
f2(a)

ξ2(a)
. (2.1)

And λ(a) and ρ(a) are bounded on the interval R+ = [0,∞).

2.2. Our model

In this section, we follow the notations and symbols in the literature [18]. Here is a summary. To model
spreading progress in a heterogeneous network, we consider a closed and mixed population G = (V ,E)
with N individuals, where V = {v1, v2, . . . , vN} is the set of vertices representing the individuals and E is
the set of edges representing the connections between the individuals. We also assume that contacts are
symmetric, that is, if an edge (v1, v2) ∈ E connects v1 to v2, then an edge also connects v2 to v1. Although
the network is undirected (i.e., any two neighboring vertices can infect each other), we wish to keep track
of who infects who. Therefore, for each edge (v1, v2) ∈ E, we define two arcs as the ordered pairs (v1, v2)
and (v2, v1). The first and second elements in the ordered pair (v1, v2) are frequently called the ego and
the alter, respectively [18]. Let pk be the degree distribution (pk is the probability that a random node has
k degrees). Then the probability generating functions (PGFs) of the degree distribution is given by

g(x) = p0 + p1x+ p2x
2 + p3x

3 + · · · . (2.2)

Let 〈k〉 be the average degree, and we get 〈k〉 =
∑
k

(kpk) = g
′(1).

For convenience, some notation are given in Table 1.
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Table 1: Symbol.
Symbol Description
AX Set of arcs (ego, alter) with ego in set X
MX Fraction of arcs in set AX
AXY Set of arcs (ego, alter) s.t. ego ∈ X and alter ∈ Y
MXY Fraction of arcs in set AXY
θ The fraction of degree one nodes that remain susceptible at time t
pi(t,a) The probability that an arc with a susceptible

ego has an infectious alter, where the infectious alter has infection age a at time t
pS(t) The probability that an arc with a susceptible ego has a susceptible alter at time t

By defining these symbols, we can get

pi(t,a) =MSi(t,a)/MS(t), (2.3)
pS(t) =MSS(t)/MS(t), (2.4)

pI(t) =

∫∞
0
pi(t,a)da. (2.5)

The SIQR model is summarized as follow. The detailed derivation process is given in Appendix A.
θ̇ = −θ

∫∞
0 λ(a)pi(t,a)da,

ṗS(t) = pS(t)
(

1 − θ
g ′′(θ)
g ′(θ)

) ∫∞
0 λ(a)pi(t,a)da,(

∂

∂t
+
∂

∂a

)
pi(t,a) = −(λ(a) + ρ(a) + µ)pi(t,a) + pi(t,a)

∫∞
0 λ(a)pi(t,a)da.

(2.6)

To facilitate numerical simulation, we supplement the model with S = g(θ),(
∂

∂t
+
∂

∂a

)
i(t,a) = −µi(t,a) − ρ(a)i(t,a).

The boundary condition of model (2.6) is

pi(t, 0) =
pS(t)θg

′′(θ)

g ′(θ)

∫∞
0
λ(a)pi(t,a)da.

2.3. The initial conditions
Because only a small number of nodes in the network are selected uniformly at randomly and infected

at the initial moment, the probability of connecting two initially infected nodes is low. If the probability
that a node is selected as an initially infected is ε, that is, I(0) = ε. The initial infection density of various
infection age obey the Uniform distribution, which is assumed to have the probability density function
ϕ(a). So we have

∫A
0 ϕ(a)da = 1, where A < ∞ is the maximal infection age. We assume that the

initial infected nodes are not interconnected. Therefore
∫∞

0 MSi(0,a)da ≈
∫∞

0 Mi(0,a)da = I(0) = ε.
There are no recovered nodes initially, so MS(0) = 1 −

∫∞
0 MSi(0,a)da = 1 − ε. Finally, MSS(0) =

MS(0) −
∫∞

0 MSi(0,a)da = 1 − 2ε. Hence, we have the following initial conditions:

θ(0) = 1 − ε, pi(0,a) =
MSi(0,a)
MS(0)

=
εϕ(a)

1 − ε
, pS(0) =

MSS(0)
MS(0)

=
1 − 2ε
1 − ε

. (2.7)

Using the method of characteristics, pi(t,∞) = pi(0,∞) = 0, model (2.6) is converted into the follow-
ing integro-differential equations

θ̇ =− θ

∫∞
0
λ(a)pi(t,a)da,

ṗS(t) =pS(t)

(
1 − θ

g ′′(θ)

g ′(θ)

) ∫∞
0
λ(a)pi(t,a)da,
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ṗI(t) =
pS(t)θg

′′(θ)

g ′(θ)

∫∞
0
λ(a)pi(t,a)da− µpI(t)

− (1 − pI(t))

∫∞
0
λ(a)pi(t− a,a)da

×
∫t

0

pS(t− a)θg
′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsf1(a)ξ2(a)da (2.8)

− (1 − pI(t))

∫∞
t

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds f1(a)

ξ1(a− t)

ξ2(a)

ξ2(a− t)
da

−

∫∞
0
λ(a)pi(t− a,a)da

×
∫t

0

pS(t− a)θg
′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsξ1(a)f2(a)da

−

∫∞
t

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds ξ1(a)

ξ1(a− t)

f2(a)

ξ2(a− t)
da.

The calculation process is given in Appendix B.

3. Epidemic threshold

Next we will analyze the threshold which means the critical value. Below a threshold, the disease
disappears. The number of susceptible becoming infected in a small time interval is proportional to ṗI.
Therefore, if ṗI(t = 0) < 0, a disease would inevitably disappear without reaching a fraction of the
population. The epidemic threshold occurs where

ṗI(t = 0) = 0 =
pS(0)θg ′′(θ)

g ′(θ)

∫∞
0
λ(a)pi(0,a)da− µpI(0)

− (1 − pI(0))
∫∞

0

εϕ(a)

1 − ε

f1(a)

ξ1(a)
da−

∫∞
0

εϕ(a)

1 − ε

f2(a)

ξ2(a)
da.

Applying the initial conditions above and Eq. (2.1) into ṗI and considering ε� 1 gives

ṗI(t = 0) =
1 − 2ε
1 − ε

(1 − ε)
g ′′(θ)

g ′(θ)

∫∞
0
λ(a)

εϕ(a)

1 − ε
da− µ

∫∞
0

εϕ(a)

1 − ε
da

−

(
1 −

∫∞
0

εϕ(a)

1 − ε
da

) ∫∞
0

εϕ(a)

1 − ε
λ(a)da−

∫∞
0

εϕ(a)

1 − ε
ρ(a)da

≈ε
(
g ′′(1)
g ′(1)

∫∞
0
ϕ(a)λ(a)da− µ−

∫∞
0
ϕ(a)λ(a)da−

∫∞
0
ϕ(a)ρ(a)da

)
.

Then ṗI(t = 0) > 0 leads to

g ′′(1)
g ′(1)

∫∞
0
ϕ(a)λ(a)da > µ+

∫∞
0
ϕ(a)λ(a)da+

∫∞
0
ϕ(a)ρ(a)da,

i.e., ∫∞
0 ϕ(a)λ(a)da

µ+
∫∞

0 ϕ(a)ρ(a)da
>

g ′(1)
g ′′(1) − g ′(1)

.

Therefor the threshold is ( ∫∞
0 ϕ(a)λ(a)da

µ+
∫∞

0 ϕ(a)ρ(a)da

)∗
=

g ′(1)
g ′′(1) − g ′(1)

.

4. Simulations

In this section, we will carry out numerical simulation to analyze the effects of infection age on disease
spreading.

We carry out numerical simulations of model (2.6) in the truncated Poisson network and the trun-
catedPower-law network. So pk is represented as follows
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pk =

 1 −
30∑
k=2

αke−α

k! , k = 1,

αke−α

k! , k = 2, 3, 4, . . . , 30,
(4.1)

or

pk =

 1 −
30∑
k=2

(43/90)k(−1.2), k = 1,

(43/90)k(−1.2), k = 2, 3, 4, . . . , 30.
(4.2)

Furthermore, both averaged degrees of the networks above are 8.3382, i.e., 〈k〉 = 8.3382. And we’re given
N = 104. According to the CM model proposed by Volz(2008) [18], we get the new network distribution.

To describe the scale of the disease, we adopt the cumulative epidemic incidence, defined as the
fraction of infectious or quarantine or recovered nodes (Volz 2008 [18]), which is denoted as J. Then we
have

J = 1 − g(θ).

4.1. Markovian transmission and non-Markovian quarantine
Here, we use three common distributions, Gamma, Uniform or Weibull distributions, to describe the

quarantine process [6, 20]. Let X be the quarantine time, which is a random variable. So P(X 6 t) is the
probability that the quarantine time is less than or equal to t.

(1) If X obeys the Gamma distribution with shape a1 and scale b1, denoted as G(a1,b1). The probability
density function is

f2(x) =

 xa1−1e
− x
b1

Γ(a1)b
a1
1

, x > 0,

0, x < 0,

the quarantine rate is

ρ(a) =
aa1−1e

− a
b1

ba1
1 (Γ(a1) −

∫ a
b1
0 xa1−1e−xdt)

for a > 0,

where Γ(a1) is Gamma function. The expected value is E(X) = a1b1, and the variance is σ2(X) =
a1b

2
1. If E(X) = 1, then the Gamma distribution is defined by one parameter a1. Hence we denote it

as G(a1).

(2) If X obeys the Uniform distribution on the interval [a2,b2], denoted as U(a2,b2). The probability
density function is

f2(x) =

{ 1
b2−a2

, a2 6 x 6 b2,
0, otherwise,

the quarantine rate is

ρ(a) =
1

b2 − a
for a ∈ [a2,b2],

where b2 > a2 > 0. The expected value is E(X) = a2+b2
2 , and the variance is σ2(X) =

(b2−a2)
2

12 . If
E(X) = 1, then the Uniform distribution is defined by one parameter a2. Hence we denote it as
U(a2).

(3) If X obeys the Weibll distribution with shape a3 and scale b3, denoted as W(a3,b3). The probability
density function is

f2(x) =

{
a3
b3
( xb3

)a3−1e
−( xb3

)a3
, x > 0,

0, x < 0,
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the quarantine rate is

ρ(a) =
a3

b3

(
a

b3

)a3−1

for a > 0.

The expected value is E(X) = b3Γ(1 + 1
a3
), and the variance is σ2(X) = b2

3[Γ(1 + 2
a3
) − (Γ(1 + 1

a3
))2].

If E(X) = 1, then the Weibull distribution is defined by one parameter a3. Hence we denote it as
W(a3).

In this subsection, if not otherwise specified, the numerical simulations of model (2.6) are performed
with λ = 0.3, µ = 0.1, N = 104, the initial conditions given in (2.7) with ε = 0.001, pk given in (4.1) or (4.2)
and ρ(a) given above in different cases.

Next, we will study the effect of the quarantine time distribution on the spread of disease in more
detail.
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Figure 2: In the network with truncated Poisson degree distribution, the time series of the number of the infection density
with the different quarantine time distributions: (a) Gamma distribution G(a1,b1), where a1 = 1.5, (b) Uniform distribution
U(a2,b2), where a2 = 0.1, and (c) Weibull distribution W(a3,b3), where a3 = 1.5, respectively. In the network with Poisson
degree distribution, the time series of the cumulative epidemic incidence with the different quarantine time distributions: (d)
Gamma distribution G(a1,b1), where a1 = 1.5, (e) Uniform distribution U(a2,b2), where a2 = 0.1, and (f) Weibull distribution
W(a3,b3), where a3 = 1.5, respectively.

Figures 2 and 3 show the temporal evolutions of the infection density and the cumulative epidemic
incidence for the different quarantine time distributions and in the network with the truncated Poisson
degree distribution and the truncated Power-law degree distribution, respectively. Let a1 = 1.5, a2 =
0.1, a3 = 1.5 and different expectations of quarantine time E(X) are given. The results show that the
increases in the expectations of quarantine time bring the larger peaks and the larger cumulative epidemic
incidence. Therefore, timely quarantine can reduce the peak of infection density and the cumulative
epidemic incidence.

In Figure 4, the temporal evolutions of the infection density and the cumulative epidemic incidence
for the different quarantine time distributions with different parameters ai (i = 1, 2, 3) are given. Since
E(X) = 1, the variance can be looked as the function of ai. And it is easy to see that this function is
decreasing. So greater ai leads to smaller variance. The results in Figure 4 show that, with given ai, the
infection density goes up to the peak first and then goes down to zero, the cumulative epidemic incidence
is rising to the peak first and then remains constant. Furthermore, greater variances, i.e., smaller ai, will
lead to the smaller peaks and cumulative epidemic incidence.
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Figure 3: In the network with truncated Power-law degree distribution, the time series of the number of the infection density
with the different quarantine time distributions: (a) Gamma distribution G(a1,b1), where a1 = 1.5, (b) Uniform distribution
U(a2,b2), where a2 = 0.1, and (c) Weibull distribution W(a3,b3), where a3 = 1.5, respectively; In the network with Power-law
degree distribution, the time series of the cumulative epidemic incidence with the different quarantine time distributions: (d)
Gamma distribution G(a1,b1), where a1 = 1.5, (e) Uniform distribution U(a2,b2), where a2 = 0.1, and (f) Weibull distribution
W(a3,b3), where a3 = 1.5, respectively.
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Figure 4: The time series of the infection density for the different quarantine time distributions with different parameters ai
(i = 1, 2, 3): (a) Gamma distribution; (b) Uniform distribution; (c) Weibull distribution. The time series of the cumulative epidemic
incidence for the different quarantine time distributions with different parameters ai (i = 1, 2, 3): (d) Gamma distribution; (e)
Uniform distribution; (f) Weibull distribution.

4.2. Non-Markovian transmission and Markovian quarantine

In this subsection, we assume that the infection time distribution f1(a) is one of three different distri-
butions, namely Gamma distribution G(a4,b4), Uniform distribution U(a5,b5) and Weibull distribution
W(a6,b6). Let Y be the infection time, which is a random variable. We can get the infection rates of the
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three distributions

λ(a) =
aa4−1e

− a
b4

ba4
4 (Γ(a4) −

∫ a
b4
0 xa4−1e−xdt)

for a > 0,

λ(a) =
1

b5 − a
for a ∈ [a5,b5],

λ(a) =
a6

b6

(
a

b6

)a6−1

for a > 0,

respectively.
If not otherwise specified, the numerical simulations of model (2.6) are performed with ρ = 0.2,

µ = 0.1, N = 104, the initial conditions given in (2.7) with ε = 0.001, pk given in (4.1) or (4.2) and λ(a)
given above in different cases.
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Figure 5: Numerical simulations of (2.6) in the network with truncated Poisson degree distribution and for the different infection
time distributions. The parameters of the distributions are set to have the same mean and variance. The expectation and the
variances are: (a),(d) E(Y) = 1, σ2(Y) = 0.2732, (b),(e) E(Y) = 2, σ2(Y) = 1.0930, (c),(f) E(Y) = 3, σ2(Y) = 2.4592, (g),(j) E(Y) = 5,
σ2(Y) = 6.8314, (h),(k) E(Y) = 6, σ2(Y) = 9.8372, and (i),(l) E(Y) = 8, σ2(Y) = 17.4882.
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Figure 6: Numerical simulations of (2.6) in the network with truncated Power-law degree distribution and for the different
infection time distributions. The parameters of the distributions are set to have the same mean and variance. The expectation
and the variances are: (a),(d) E(Y) = 1, σ2(Y) = 0.2732, (b),(e) E(Y) = 2, σ2(Y) = 1.0930, (c),(f) E(Y) = 3, σ2(Y) = 2.4592, (g),(j)
E(Y) = 5, σ2(Y) = 6.8314, (h),(k) E(Y) = 6, σ2(Y) = 9.8372, and (i),(l) E(Y) = 8, σ2(Y) = 17.4882.

Figures 5 and 6 show the temporal evolutions of the infection density and the cumulative epidemic
incidence for the different infection time distributions in the network with the truncated Poisson degree
distribution and the truncated Power-law degree distribution, respectively. The parameters of the distri-
butions are set to have the same mean and variance. Comparatively speaking, the infection density and
the cumulative epidemic incidence with infection time obey the Uniform distribution has the larger peak,
Weibull distribution is the second, Gamma distribution is the smallest.

5. Conclusion

In this study, we used the method of generating function to establish the SIQR epidemic model with
infection age. Next, we derive the epidemic threshold of the model. Thirdly, we focus on the impact
of three different infection or quarantine time distributions on disease transmission. We obtained the
following results.
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(1) When ai(i = 1, 2, 3) is fixed and different expectations of quarantine time E(X) are given, the re-
sults show that timely quarantine can reduce the peak of infection density and the cumulative epidemic
incidence.

(2) Keeping the expectation of quarantine time as one, given ai(i = 1, 2, 3), the infection density goes up
to the peak first and then goes down to zero, the cumulative epidemic incidence is rising to the peak first
and then remains constant. Furthermore, greater variances, i.e. smaller ai, will lead to the smaller peaks
and cumulative epidemic incidence.

(3) Comparatively speaking, the infection density and cumulative epidemic incidence with infection time
obey the Uniform distribution has the larger peak, Weibull distribution is the second, Gamma distribution
is the smallest.

Since many epidemics now quarantine not only the infected but also those who have had close contact
with them, this is a question worthy of our further study.

Acknowledgment

This work is supported by the National Natural Science Foundations of China under Grant (Nos.
11571210, 11971279,11701348,11331009, 11501339, 11101251, 11001157, 11471197).

References

[1] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, New York,
(1992). 1

[2] E. Cator, R. Van de Bovenkamp, P. Van Mieghem, Susceptible-infected-susceptible epidemics on networks with general
infection and cure times, Phys. Rev. E, 87 (2013), 7 pages. 1

[3] S. Chen, M. Small, Y. Tao, X. Fu, Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks,
Bull. Math. Biol., 80 (2018), 2049–2087. 1

[4] S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. 1
[5] G. Herzog, R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal.

Real World Appl., 5 (2004), 33–44. 1
[6] W. Jing, Z. Jin, J. Zhang, An SIR pairwise epidemic model with infection age and demography, J. Biol. Dyn., 12 (2018),

486–508. 1, 2.1, 4.1
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Appendix A: The dynamics of SIQR epidemic model in a network

In this appendix, we will show how to model the disease spreading with infection age, non-Markovian
the infection process and non-Markovian the quarantine process with an SIQR-epidemic model involving
the variables θ, pi and pS. The method here is an extension of that used in Volz 2008 [18].

Firstly, we will derive the dynamic of θ. The definition of pI shows us that the probability an arc
with a susceptible ego has an infectious alter is pI. Then a susceptible node with degree k is con-
nected to an infected node with the probability kpI. Hence, the hazard for a susceptible node at time
t is k

∫∞
0 λ(a)pi(t,a)da. Therefore, let Sk represent the probability of nodes with degree k that remain

susceptible at time t, we have

Ṡk = −kSk

∫∞
0
λ(a)pi(t,a)da. (5.1)

From Eq. (5.1), we have

Sk(t) = exp
{
−

∫t
0
k

∫∞
0
λ(a)pi(u,a)dadu

}
=

(
exp
{
−

∫t
0

∫∞
0
λ(a)pi(u,a)dadu

})k
. (5.2)

For convenience, we will use the symbol θ to represent

θ := S1 = exp
{
−

∫t
0

∫∞
0
λ(a)pi(u,a)dadu

}
.

From Eq. (5.2), it is clear that Sk(t) = θk. Then the dynamics of θ is easy to get

θ̇ = −θ

∫∞
0
λ(a)pi(t,a)da. (5.3)

Given θ, it is easy to determine the fraction of nodes which remain susceptible at time t. Therefore,
we have

S = p0 + p1S1 + p2S2 + p3S3 + · · · = p0 + p1θ+ p2θ
2 + p3θ

3 + · · · = g(θ).

Furthermore,

Ṡ =
d

dt
S =

d

dt
g(θ) = θ̇g ′(θ) = −θg ′(θ)

∫∞
0
λ(a)pi(t,a)da. (5.4)

Thus, it can be concluded that the density of infected satisfies
(
∂

∂t
+
∂

∂a

)
i(t,a) = −µi(t,a) − ρ(a)i(t,a),

i(t, 0) = θg ′(θ)
∫∞

0 λ(a)pi(t,a)da.
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Next, we need to derive the dynamic of pi(t,a). According to Eq. (2.3), the dynamic of pi(t,a) follows

(
∂

∂t
+
∂

∂a

)
pi(t,a) =

∂

∂t
pi(t,a) +

∂

∂a
pi(t,a)

=
∂

∂t

(
MSi(t,a)
MS(t)

)
+
∂

∂a

(
MSi(t,a)
MS(t)

)
=

1
MS(t)

(
∂

∂t
+
∂

∂a

)
MSi(t,a) +MSi(t,a)

(
−
ṀS(t)

M2
S(t)

)
,

pi(t, 0) =
MSi(t, 0)
MS(t)

.

(5.5)

The right side of (5.5) involves MS, ṀS, MSi,
(
∂
∂t +

∂
∂a

)
MSi(t,a), MSi(t, 0). According to the definition

of MS(t) in Table 1, we have

MS(t) =

∑
k

kpkSk∑
k

kpk
=

∑
k

kpkθ
k

g ′(1)
=

[
d

dx
g(θx)

]
x=1

g ′(1)
=
θg ′(θ)

g ′(1)
. (5.6)

Then using Eqs. (5.3) and (5.6), we can get the derivative of MS(t),

ṀS(t) =
d

dt

(
θg ′(θ)

g ′(1)

)
=
θ̇g ′(θ) + θθ̇g ′′(θ)

g ′(1)
= −

θ

g ′(1)
(g ′(θ) + θg ′′(θ))

∫∞
0
λ(a)pi(t,a)da. (5.7)

Furthermore, MSi(t,a) easily follows,

MSi(t,a) =MS(t)×
MSi(t,a)
MS(t)

=MS(t)pi(t,a) =
pi(t,a)θg ′(θ)

g ′(1)
. (5.8)

Similarly, MSS(t) is obtained as follows,

MSS(t) =MS(t)×
MSS(t)

MS(t)
=MS(t)pS(t) =

pS(t)θg
′(θ)

g ′(1)
. (5.9)

Table 2: Symbol.
Symbol Description
δXY The average excess degree of nodes in state X and selected along an arc (X, Y)
δXY(Z) As δXY but counting only arcs from ego to nodes in state Z

To get the dynamic of MSi, we need the rearrangement of arcs among sets ASS and ASI as −Ṡ
nodes become infected in a small time interval. Before that, we will introduce the definition of excess
degree given in Volz (2008) [18]. Let δXY represents the average degree of nodes in set X, selected with
probability proportional to the number of arcs to nodes in set Y, not counting one arc to nodes of type Y.
This is commonly called the excess degree of a node. According to the definition of the excess degree, it is
easy to get

δSI =
θg ′′(θ)

g ′(θ)
.

Then δSI(ia) δSI(S) follow,

δSI(ia) = pi(t,a)δSI =
pi(t,a)θg ′′(θ)

g ′(θ)
, (5.10)
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where ia is introduced as the fraction of the density of infected nodes with respect to infection age a at
time t, and

δSI(S) = pS(t)δSI =
pS(t)θg

′′(θ)

g ′(θ)
. (5.11)

As a fraction −Ṡ nodes are infected in time dt, MSi is reduced in four way.
Firstly, since there are δSI(ia) infected nodes, not counting the one in the arc, around the newly

infected, MSi is reduced at a rate

−ṠδSI(ia)/g
′(1) =

pi(t,a)θ2g ′′(θ)

g ′(1)

∫∞
0
λ(a)pi(t,a)da.

Secondly, because δSI(ia) does not count the arc along which a node was infected, the transmission
from the infectious alter to the susceptible ego in this arc brings MSi to decrease at a rate λ(a)MSi(t,a).
Thirdly, the recovery of the infectious alter in this arc bringsMSi to decrease at a rate µMSi(t,a). Fourthly,
the quarantine of the infectious alter in this arc brings MSi to decrease at a rate ρ(a)MSi(t,a).

At the same time, because there are δSI(S) susceptible nodes around the newly infected, the newly
increased MSi is

−ṠδSI(S)/g
′(1) =

pS(t)θ
2g ′′(θ)

g ′(1)

∫∞
0
λ(a)pi(t,a)da.

Using Eqs. (5.10), (5.11), and (5.4), we have
(
∂

∂t
+
∂

∂a

)
MSi(t,a) = −(λ(a) + ρ(a) + µ)MSi(t,a) −

pi(t,a)θ2g ′′(θ)

g ′(1)
∫∞

0 λ(a)pi(t,a)da,

MSi(t, 0) =
pS(t)θ

2g ′′(θ)

g ′(1)
∫∞

0 λ(a)pi(t,a)da.
(5.12)

Now substituting Eqs. (5.6), (5.7), (5.8), and (5.12) into Eq. (5.5), we will obtain
(
∂

∂t
+
∂

∂a

)
pi(t,a) = −(λ(a) + ρ(a) + µ)pi(t,a) + pi(t,a)

∫∞
0 λ(a)pi(t,a)da,

pi(t, 0) =
pS(t)θg

′′(θ)

g ′(θ)

∫∞
0 λ(a)pi(t,a)da.

According to Eq. (2.4), the dynamic of pS(t) follows,

ṗS(t) =
d

dt

(
MSS(t)

MS(t)

)
=
ṀSS(t)

MS(t)
−
ṀS(t)MSS(t)

M2
S(t)

. (5.13)

The calculation of ṀSS(t) is very similar to that of
(
∂
∂t +

∂
∂a

)
MSi(t,a). The newly infected nodes have

on average δSI(S) arcs to other susceptible, so that

ṀSS =
−2× (−Ṡ)δSI(S)

g ′(1)
=

−2pS(t)θ2g ′′(θ)

g ′(1)

∫∞
0
λ(a)pi(t,a)da. (5.14)

Substituting Eqs. (5.6), (5.7), (5.9), and (5.14) into Eq. (5.13), we have

ṗS(t) = pS(t)

(
1 − θ

g ′′(θ)

g ′(θ)

) ∫∞
0
λ(a)pi(t,a)da.

So we get model (2.6).
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Appendix B: Derivation of equations of second-order motifs for an SIQR model

In this appendix, we give the derivation of pi(t,a). Let us consider the following first-order PDE:

(
∂

∂t
+
∂

∂a

)
pi(t,a) = −(λ(a) + ρ(a) + µ)pi(t,a) + pi(t,a)

∫∞
0
λ(a)pi(t,a)da, (5.15)

with boundary condition pi(t, 0) =
pS(t)θg

′′(θ)

g ′(θ)

∫∞
0 λ(a)pi(t,a)da and initial condition pi(0,a) =

εϕ(a)

1 − ε
.

In the method of characteristics, it is assumed that the partial differential equation can be expressed as
a system of ordinary differential equations along the characteristic curves. The characteristic curves are
found by solving the following ordinary differential equations:

dt

dτ
= 1,

da

dτ
= 1.

Let y(τ) = pi(t(τ),a(τ)), we have

dy(τ)

dτ
= −(λ(a(τ)) + ρ(a(τ)) + µ)y(τ) + y(τ)

∫∞
0
λ(u)pi(t(τ),u)du

with initial conditions
t(0) = t0, a(0) = a0, y(0) = pi(t0,a0).

The solution of the system of ordinary differential equations along the characteristic curves is

t(τ) = t0 + τ, a(τ) = a0 + τ, y(τ) = y(0)e−
∫τ

0 [λ(a(s))+ρ(a(s))+µ]ds+
∫τ

0
∫∞

0 λ(u)pi(t(s),u)duds.

Furthermore, it has

pi(t,a) = pi(t0,a0)e
−
∫τ

0 [λ(a(s))+ρ(a(s))+µ]ds+
∫τ

0
∫∞

0 λ(u)pi(t(s),u)duds

=pi(t0,a0)e
−
∫τ

0 [λ(a0+s)+ρ(a0+s)+µ]ds+
∫τ

0
∫∞

0 λ(u)pi(t0+s,u)duds.
(5.16)

If t > a, set a0 = 0. Then τ = a and t0 = t− a. Substituting these expressions into Eq. (5.16), we obtain
the solution when t > a

pi(t,a) = pi(t− a, 0)e−
∫a

0 [λ(s)+ρ(s)+µ]ds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)duds.

If t 6 a, set t0 = 0. Then τ = t and a0 = a− t. Substituting these expressions into Eq. (5.16), we obtain
the solution when t 6 a

pi(t,a) = pi(0,a− t)e−
∫t

0 [λ(a−t+s)+ρ(a−t+s)+µ]ds+
∫t

0
∫∞

0 λ(u)pi(s,u)duds

=pi(0,a− t)e−
∫a
a−t[λ(s)+ρ(s)+µ]ds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds.

So finally, the solution of Equation (5.15) can be written in the form

pi(t,a) =

{
pi(t− a, 0)e−

∫a
0 [λ(s)+ρ(s)+µ]ds+

∫a
0
∫∞

0 λ(u)pi(t−a+s,u)duds, t > a,
pi(0,a− t)e−

∫a
a−t[λ(s)+ρ(s)+µ]ds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds, t 6 a.

Using the definition and properties of hazard function, we can deduce the following formulae:

e−
∫a

0 λ(s)ds =
ξ1(a)

ξ1(0)
= ξ1(a), e−

∫a
0 ρ(s)ds =

ξ2(a)

ξ2(0)
= ξ2(a), (5.17)
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e−
∫a
a−t λ(s)ds =

ξ1(a)

ξ1(a− t)
, e−

∫a
a−t ρ(s)ds =

ξ2(a)

ξ2(a− t)
, (5.18)

λ(a)e−
∫a

0 λ(s)ds = f1(a), ρ(a)e−
∫a

0 ρ(s)ds = f2(a),

λ(a)e−
∫a
a−t λ(s)ds =

f1(a)

ξ1(a− t)
, ρ(a)e−

∫a
a−t ρ(s)ds =

f2(a)

ξ2(a− t)
.

Substituting Eq. (5.17) and Eq. (5.18) into pi(t,a), we have

pi(t,a) =


pS(t− a)θg

′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsξ1(a)ξ2(a)∫∞
0 λ(a)pi(t− a,a)da, t > a,

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds ξ1(a)
ξ1(a−t)

ξ2(a)
ξ2(a−t)

, t 6 a.

(5.19)

From Eq. (2.5), we have

pI(t) =

∫∞
0
λ(a)pi(t− a,a)da

∫t
0

pS(t− a)θg
′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsξ1(a)ξ2(a)da

+

∫∞
t

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds ξ1(a)

ξ1(a− t)

ξ2(a)

ξ2(a− t)
da.

Applying Eq. (2.5) and the third equation of Eq. (2.6), we obtain

ṗI(t) =

∫∞
0

∂

∂t
pi(t,a)da

=

∫∞
0

(
−(λ(a) + ρ(a) + µ)pi(t,a) + pi(t,a)

∫∞
0
λ(a)pi(t,a)da−

∂

∂a
pi(t,a)

)
da

=

∫∞
0

[−(λ(a) + ρ(a) + µ)pi(t,a)]da+
∫∞

0
λ(a)pi(t,a)da

∫∞
0
pi(t,a)da− pi(t,∞) + pi(t, 0)

=

∫∞
0

[−(λ(a) + ρ(a) + µ)pi(t,a)]da+
∫∞

0
λ(a)pi(t,a)dapI(t) − pi(t,∞) + pi(t, 0).

(5.20)

Again, along the characteristic lines pi(t,∞) = pi(0,∞) = 0. Putting (5.19) into (5.20), we obtain

ṗI(t) =
pS(t)θg

′′(θ)

g ′(θ)

∫∞
0
λ(a)pi(t,a)da− µpI(t)

− (1 − pI(t))

∫∞
0
λ(a)pi(t− a,a)da

×
∫t

0

pS(t− a)θg
′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsf1(a)ξ2(a)da

− (1 − pI(t))

∫∞
t

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds f1(a)

ξ1(a− t)

ξ2(a)

ξ2(a− t)
da

−

∫∞
0
λ(a)pi(t− a,a)da

×
∫t

0

pS(t− a)θg
′′(θ)

g ′(θ)
e−
∫a

0 µds+
∫a

0
∫∞

0 λ(u)pi(t−a+s,u)dudsξ1(a)f2(a)da

−

∫∞
t

εϕ(a− t)

1 − ε
e−
∫a
a−t µds+

∫t
0
∫∞

0 λ(u)pi(s,u)duds ξ1(a)

ξ1(a− t)

f2(a)

ξ2(a− t)
da.

So we get the third equation of model (2.8).
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