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Abstract

Here, we investigate the existence result for a nonlinear quadratic functional integral equation of fractional order using a
fixed point theorem of Dhage. The continuous dependence of solution on the delay functions will be studied. As an application,
an existence theorem for the fractional hybrid differential equations is proved. Also, we study a general quadratic integral
equation of fractional order.
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1. Introduction

Fractional Calculus is a mathematical field that deals with derivatives and integrals of arbitrary orders.
The fractional differential equations were of great importance due to their extensive development of
fractional calculus and its applications [22-25].

Recently, there has been great interest for many authors to study quadratic functional integral equa-
tions, which has become one of the most attractive and interesting research areas of integral equations
and functional integral equations and there are many significant existence results, we refer the reader to
[1-3, 14, 21] for some of very recent results. Quadratic integral equations have many useful applications in
describing numerous events and problems of the real world, for example, the theory of radiative transfer,
kinetic theory of gases, the theory of neutron transport, the traffic theory, plasma physics, and numerous
branches of mathematical physics.

The aim of this paper is to study the existence of solutions for a nonlinear quadratic functional-integral
equations of fractional order

x(t) = k(t, x(@1(t))) + g(t, x(@2(£)))I*F(t, 1P u(t, x(@3(1)))), (1.1)
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where «, 3 € (0,1), with g € C([0,T] x R,R\{0}), f,u € C([0, T] x R,R), and k € C([0, T] x R,R). To obtain
our existence results we use a fixed-point theorem in a Banach algebra due to Dhage [5]. Further, the
continuous dependence of a unique solution on delay functions will be considered. Many authors use
fixed point theorems to prove the existence of the solution to nonlinear integral equations, see [9-11, 13].

As application, we establish the existence results for the fractional hybrid differential equations (in
short FHDE) involving D* the Riemann-Liouville differential operators of order o € (0,1)

g(tx(e@a(t))

D (x(t)fk(t,x(@l(’)‘)))) = f(t,IP u(t,x(@s3(t)))), tel=1[0,T],
x(0) = k(0,x(0)),

where «, 3, functions f,u, and g are defined like as in problem (1.1). The importance of studying hybrid
differential equations lies in dynamic systems include special situations. The consideration of hybrid
differential equations is implicit in the work of Krasnoselskii [18] and is extensively covered in many
papers on hybrid differential equations with various disturbances, see [4, 7, 15, 16, 20, 26, 27].

As a second problem, we discuss the general quadratic integral equation of fractional orders

x(t) =D gilt, x()I*Fi(t, 1P wi(t,x(1))), tel=10,T],
i=1

by applying the fixed point theorem due to Dhage [19], where i, i € (0,1), functions fj, u;, and
gi(t,x(t)) are defined like functions f,u and g as in problem (1.1), (i = 1,2,....,n). Some remarks and
applications are given.

The main points of this paper is as follows. In Sect. 2, we recall a few important definitions and
lemmas from fractional calculus used throughout this article. In Sect. 3, we state sufficient conditions
which guarantee the existence of solutions to the Eq.(1.1). While Sect. 4, deals with the existence of
continuous dependence of unique solutions for Eq. (1.1) on delay functions. In Sect. 5, we discuss
existence result for initial value problem for fractional hybrid differential equation. The existence theorem
of the general quadratic integral equation of fractional orders is presented in Sect. 6, where some remarks
and applications are present. Our conclusion is presented in Sect. 7.

2. Preliminaries

In this section, we introduce some basic definitions and preliminary facts which we need in the sequel.
Denote by L!(I) be the class of Lebesgue integrable functions on the interval 1= [0, T].

Definition 2.1. The Riemann-Liouville of fractional integral of the function f € LY(I) of order @ € R* is
defined by (see [22-25])
t (t o S)oc—l

X Mo f(s) ds,

1% f(1) = J

where I'(.) is Euler’s Gamma function.

Definition 2.2. The (Caputo) fractional-order derivative D%, « € (0,1] and t € [a, b] of the absolutely
continuous function g is defined as

« C1q d A !
Dg g(t) =1Iq dtg(t)_Lr(loc)ds

g(s) ds.

For further properties of fractional calculus operator (see [22-25] ).

Definition 2.3 ([6]). An algebra X is a vector space endowed with an internal composition law noted by
(): XxX=X, (x,y) =>x-y,

which is associative and bilinear. A normed algebra is an algebra endowed with a norm satisfying the
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following property: For all x,y € X, we have

[ -yl < xI]- yll.
A complete normed algebra is called a Banach algebra.

Definition 2.4 ([6]). Let X be a normed vector space. A mapping T : X — X is called D-Lipschitzian, if
there exists a continuous and nondecreasing function ¢ : R — R™, such that

[Tx — Tyl < &([[x —yl)),
for all x,y € X, where ¢(0) = 0.

Sometimes, we call the function ¢ to be a D-function of the mapping T on X. Obviously, every
Lipschitzian mapping is D-Lipschitzian. Further, if ¢(r) < v, then T is called nonlinear contraction on X.

Now we state a useful lemma which are helpful in transforming the fractional differential equation
into an equivalent Riemann-Louville integral equation.

Lemma 2.5 ([17]). Let us consider 0 < ot < 1 and w € L1(0,1). Then

(Hy) the equality D*I*w(t) = w(t) holds;
(Hp) the equality
. Ili(xw(t”tzo a—1

I*D%*w(t) = w(t) Mo t

holds almost everywhere on 1.

Lemma 2.6 ([5]). Let S be a nonempty, closed convex and bounded subset of a Banach algebra X and let A, C : X —
Xand B : S — X be three operators such that:

(@) A and C are Lipschitzian with Lipschitz constants & and p, respectively;
(b) B is completely continuous; and

() x=AxBy+Cx=xeSforallyeS;

(d) M+ p <, forr >0, where M = ||B(S)].

Then the operator equation AxBx + Cx = x has a solution in S.

Let X = C(I, R) be the vector of all real-valued continuous functions on I = [0, T]. We equip the space
X with the norm [|x|| = sup,; [x(t)|. Clearly, C(I,R) is a complete normed algebra with respect to this
supremum norm.

By a solution of the quadratic functional integral equation of fractional order (1.1) we mean a function
x € C(I,R) that satisfies Eq. (1.1).

3. Main results

In this section, we will study Eq. (1.1), using the following fixed point theorem for three operators in
a Banach algebra X, due to Dhage [5].
Consider the following assumptions.

(A1) The functions g : [0,T] x R — R\ {0}, and k : [0,T] x R — R are continuous and there exist two
positive functions k(t), L(t), with norms |/k|| and ||L||, respectively, such that

k(t,x) —k(t,y)l < k(t)x—yl, lg(t,x) —g(t,y)| <L(t)x—vyl,

forallt € Iand x,y € R.
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(A2) The functions f : [0, T] x R = and u : [0, T] x R — satisfy Caratheodory condition, i.e., f and u are
measurables in t for any x € R and continuous in x for almost all t € [0, T]. There exists three
functions t — a(t) ,t — b(t) and t — m(t), such that

If(t,x)| < a(t)+ bt)x], V (t,x) € IxR, lu(t,x)] <m(t), V (t,x) € I xR,

where a(.), m(.) € L' and b(.) are measurable and bounded. And I¥a(.) < My, I¥m(.) < My, ¥V v <
«, ¢ =0.

(A3) @i:1— 1, are continuous functions with ¢;(0) =0, 1=1,2,3.

(A4) There exists a number r > 0 such that

G M, T*Y G ||b][My T*FE~Y
G+H + IMNoo—y+1) MNo+p—y+1)

HLH MiTeY | ||| |b[MpTorB—Y, 7
1—[qlIL] + k)| + TEEMT=Y T TeIM Ty

> (3.1)

where H = sup, . [k(t,0)|, G =sup,;lg(t,0)|, and

LI My T I oM T By

L+ [k
I+l + Moa—v+1) Ma+p—vy—+1)

< 1.

At this stage, our target is to prove the following existence theorem

Theorem 3.1. Assume that the hypotheses (A1)-(A4) hold. Then the quadratic functional integral equation (1.1)
has at least one solution defined on 1.

Proof. Set X = C(I,R) and define a subset S of X as
S={xeX |x| <1}

where 1 satisfies inequality (3.1). Clearly S is closed, convex, and bounded subset of the Banach space X.
Now we define three operators; A : X — X, B:S — Xand C: X — X defined by:

Ax(t) = g(t,x(@2(t)), tel,  Bx(t) =I%f(t,IP u(t x(es(t))), te L, Cx(t) =k(t, x(1(t)).
Then the integral Eq. (1.1) can be written as:
x(t) = Ax(t) - Bx(t) + Cx(t), tel

We shall show that A, B, and C satisfy all the conditions of Lemma 2.6. This will be achieved in the
following series of steps.

Step 1. We first show that A and C are Lipschitzian on X. To see this, let x,y € X, so

|Ax(t) — Ay(t)] = lg(t, x(t)) — g(t, y(t))| < L(t) x(t) —y(t)] < IL| [Ix =y,

which implies ||[Ax — Ay|| < ||L|| |[x —y]|, for all x,y € X. Therefore, A is a Lipschitzian on X with Lipschitz
constant ||L||.
In a similar way, we can deduce that

1Cx = Cyl < [[k[llx—yll,

for all x,y € S. This shows that C is a Lipschitz mapping on X with the Lipschitz constant |/k]||.

Step 2. We show that B is a compact and continuous operator on S into X.
First we show that B is continuous on X. Let {x,} be a sequence in S converging to a point x € S.
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Then by the Lebesgue dominated convergence theorem, let us assume that t € I and since u(t,x(t)) is
continuous in X, then u(t,x,(t)) converges to u(t,x(t)), (see assumption (Ay)) applying Lebesgue
dominated convergence theorem, we get

lim 1P u(s, xn(@3(s))) = 1P uls, x(@s3(s))).

n—oo

Also, since f(t,x(t)) is continuous in x, then using the properties of the fractional-order integral and
applying Lebesgue dominated convergence theorem, we get

lim Bxn(t) = Lim I% f(t, IP w(t, xn(@3(t))) = I* £(t, IP u(t, x(@3(t))) = Bx(t).

n—oo n—oo

Thus, Bxn, — Bx as n — oo uniformly on R", and hence B is a continuous operator on S into S. Now,
we show that B is a compact operator on S. It is enough to show that B(S) is a uniformly bounded and
equicontinuous set in X. Let x € S be arbitrary. Then by hypothesis (A»),

[t (t—s)* 1

Jo  T(x)

[t (t—s)*1

Jo Tle)

< [t (t—s)*1
Jo Ma)

Bx(t)] < (s, TPu(s, x(@3(s)))lds

< [a(s) +b(s)TP |u(s, x(@3(s))ds

t (t_s)cx—l
a(s)ds—l—JO )

o 1
< I%a(t) + Hb||J (tra)lﬁm(s)ds

b(s)ITP [u(s, x(@3(s)))1ds

I*%a(t) 4 ||b 1% Pm(t)
I YT¥a(t) + [[b][ 1% P~V TV m(t)
t (4 __ —vy—1 t(+ _ cyx+p—v—1
(t—s)*7Y J(t s)
M J S s+ (bM ds
o ey 4 IPIMe | e
T*x—Y Tx+B—vy

— 4 |bM )
Ma—y+1) vl Tat+p—v+1)

<
<

N

<My

for all t € I. Taking supermom over t,

Ta—Yy Toa+B—vy
—— +|b||M =
Moax—vy-+1) Ibll Tla+p—v+1)

IIBx(t)]| < M4
Then
IIBx(t)]| < K

for all x € S. This shows that B is uniformly bounded on S.
Now, we proceed to show that B(S) is also equicontinuous set in X. Let t;, t, € I, and x € S. Without
loss of generality assume that t; < to, then we have

(Bx)(t2) — (Bx)(t )

tz—S B — tlw
J (sI u(s,x(@s3(s))))ds Jo Mo

tz—s B t (tzfs)“_l
<[ il Pt xoa(slas + |2

f(s, IPu(s, x(@3(s))))ds
f(s, IPu(s, x(@3(s))))ds

(tl—s) ! B
_L Wf(s,l u(s, x(ps(s)))ds
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< Jtl (tZ _ s)(xfl — (tl — S)“il f(S,IBU(S,X((PS(S)))) dS,

t o—1
b (2 —s)*
0 M) fls, 1 U(SIX(@s(s))))derJ

t r(‘x)
and

[(Bx)(t1) — (Bx)(t2)]

b2 MH(S, 1Pu(s,x(@3(s))))lds

|f(s,lﬁu(s,x(<p3(s))))|ds+J

: T T
< [ T ) s bis Pt s (o) s
] a1+ st sl as
o[ B
ol | [ T e gntsilasc+ |2 s xtonto o
< o (=20
+ vl UO (tz‘s)“;(‘ag“ =" B (s)ds + j (t2 F(;);Xllﬁm(s)ds]
< o (=20
(2 ] [
R
o () [ o

G (- g)al ()Y ]
+Ll Ma) TRyt D

<a| [t — & —2(tr — t1) ¥ bM [t — % —2(tp — 1) TB~Y
s e Mot+1) 27 Tla+Drp—vy+1 )’

ie.,

X g . x X _ 1% _2 _ & TB—Y
1)~ B < ol (S ) e (M)

Hence, for € > 0, there exists & > 0 such that
[t —t1l <d = [(Bx)(t2) — (Bx)(t1)| <€,

for all t1,t» € I and for all x € S. This shows that B(S) is an equicontinuous set in X. Now, the set B(S)
is a uniformly bounded and equicontinuous set in X, so it is compact by the Arzela-Ascoli theorem. As a
result, B is a complete continuous operator on S.



Sh. M. Al-Issa, N. M. Mawed, ]J. Nonlinear Sci. Appl., 14 (2021), 181-195 187

Step 3. The hypothesis (c) of Lemma 2.6 is satisfied. Let x € X and y € S be arbitrary elements such that
x = AxBy + Cx. Then we have

x(D)] < [AX(1)[[By(t)[+ |Cx(t)]

_ S)ocfl

< Igltx(al))] | T 1 18 uls,y(oals))lds + k(e o (s))

t (t_s)ocfl 5
< [Ig(t,X(tpz(t)))—g(t,0)|+|9(t,0)l]J o If(s, IF uls,y(es(s)))lds

o TN«
+k(t, x(@1(t))) —k(t,0)| + [k(t,0)]

t o a—1
< [ILhixate)]+ 6] | fats) + b(s)1P s, (palt))] ds + [lixCon o)+ H
t _e)ax—1
< Ucloate)) + 61+ [ 52— Tals) + blsPm(s)ids + [kllxlga(e)]+ H

< [|ILfjr+ Gl + I%a(t) + ||bHI°‘+f3m(t)+|yk|yr+H
< [[Lfr + 6] (I* YT aft) + [[b 1> P=YTYm(t)) + [[k|r + H

t (t_s)ocfyfl t (t_s)oﬁﬁfyfl
J; Moa—7) d&mebL Mo+ B —v)

sXTY gxt+B—Yy
) + [[k|| v +H.

—— +||b||M
Mo—vy+1) b Ma+tp—v+1)

<UWWA4H<M4 m)+uuh+H

< [JILfr + G] <M1

Therefore

k H+[||IL Gl (M L b||M Ll
t)] < +H+ + e t
(Ol < Ikl v ILiir < Tla—yrn 1ol 2F(oc+[3—v+1)>

Taking supremum over t,

My T*Y bl|M,Tx+B—Y
wum<mmr+H+muﬁ+m< i LY ><‘

Nao—vy+1) T(x+p—v+1)

Therefore, x € S.
Step 4. Finally we show that 5M + p < 1, that is, (d) of Theorem 2.6 holds. Since

M = ||B(S)|| = sup {sup IBx(t)]

My T®Y  [b]|My TP~
xeS | t€] h

Mao—vy+1) T(x+pB—v+1)

and by (A4) we have
IL[ M+ k]| <1,

with & = ||L|| and p = ||k]|.

Thus all the conditions of lemma 2.6 are satisfied and hence the operator equation x = AxBx + Cx has
a solution in S. In consequence, Eq. (1.1) has a solution on I. This completes the proof. O

4. Continuous dependence

In this section, we give sufficient conditions for the uniqueness of the solution of Eq. (1.1) and study
the continuous dependence of this solution on the delay functions @;(t).
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4.1. Uniqueness of the solution
Let us assume the following assumption

(A3) Let f : [0,T] xR — Rand u : [0,T] x R — R be a continuous functions satisfying the Lipschitz
condition and there exists two positive functions w(t), 8(t) with bounded ||w| and ||8||, such that

f(t,x) —f(t, y)l < wlt)x—yl, hu(t, x) —u(t,y)l < 0(t)x —yl,
where F = sup, {[f(t,0)|, and U = sup, . [u(t, 0)].

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied with replace condition (A2) by (A3). Then the
solution x € C[0, T] of Eq. (1.1) is unique, if

[wlITlIofix] +u) JLj TP FTe [ITx) + Gl [wille] T*?
Ma+p+1) Moa+1) Moa+p+1)

k|| + < 1.

Proof. Firstly, we notice that condition (A}) implies condition (A;) for function f. Let x, y be two
solutions of Eq. (1.1), then

x(t) =y ()] < [k(t, x(@1(t)) —k(t, y(@1(1)))]
+1g(t, x(@2 (1)) I*F(t, IP u(t, x(@3(1))))) — glt, y(@2())I*F(t, 1P u(t, y(@s(t))))]
< k(t)x(@1(t)) —y(@1(t))]

tf_ g1
+ [g(t, x(@2(1))) — g(t, y(@a(t)))] L (tr(i)c)

t _e\ax—1
Hlaltxeao)] | 5

< [k(D)x(@1(t)) —y(e1(t))]

[£(s, IPu(s, x(@a(s)))lds

(s, TPu(s, x(@a(s))) — (s, IPuls, y(ea(s)))| ds

t(p_g)x—1
+ L(t)Ix(@2(t)) —y(cpz(t))ljo (tr(i)c)
s)* 1

gt xloa(t) — gtt,0) +lgt,00] | E522
< ()] (1 (£) ~ u(@a(t))

t _ e)ax—1
FILOIxo2(t) - ylea(e)] | LT

t e a—1 s _ \pR-1
# [LOto2(0)+6] | LTl | LT X eale)) — w(r y(gale)] ds v
T)B-1

t _ o)ax—1 ps _
< I el + el = wl [l | S [ BT fermistoatal+ s ar

t(t__s)all[S(s__T)Bl
o T(B)

[I(s, TP(s, x(@3(s))) — f(s,0)| + I£(s, 0)I] ds

w(s)[TPu(s, x(@3(s))) — TPu(s, y(@s(s)))|ds

[w(s)ITP [u(s, x(@3(s)))l + F]ds

t(t_s)afl }
+ | S Fs| L] + Glwllel | S

Ta+6 T
< — L — 0 u F
Il =yl + Ll yn[uwnw Il + Wersr g + WH)}

Ix(@3(T) —y(@s3(T)/dsdT

Tx+B

UL+ il ~ Yl o 1y

Taking supremum over t, we conclude that

Moa+p+1) Mo+1) Moa+p+1) '

Ix—yll < <uku+ il
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Then

wl|[]|0]|[]x|| +u] ||L| T*+PF L FT* (L[| + Gl|w]||/e] Tx*F
[1_<”k”+ [wll el xI L] L] LI} + GIifwlllie] Ix—yl| <0.

MNMa+p+1) MNo+1) Ma+p+1)

This yields that the uniqueness of solution for Eq. (1.1).

4.2. Continuous dependence on the delay functions
Next we prove the continuous dependence of the unique solutions on the delay functions @i (t).

Definition 4.2. The solution of Eq. (1.1) depends continuously on the delay functions ¢;(t) if ¥V € > 0,

36 > 0, such that
lpi(t) — @i (1) <0 = [x—x"|I<e

Theorem 4.3. Let the assumptions of Theorem 4.1 be satisfied. Then the solution of the Eq. (1.1) depends continu-

ously on the delay function @1(t).

Proof. For x, x* be two solutions of the Eq. (1.1). Let 8 > 0 be given such that |@(t) — @7 (t)| <,V e > 0.

Then
(1) (1)
t (t S)oc—l
< [kt x(@1(1))) — k(t, x* (@7 (1)) + |g(t, x(@2(t )))J0 Mo (s, I u(s, x(@s(s)))ds
t _e\ax—1
~ (e (oa(t) | E (s 1P (s, ((als)as
. t (t_s)(xfl 5
< Ik(t,x(91(6)) — k(X" (@F (0] + ot xloa(0) | L2t PPuls, x(pa(s)))ds
t oy a—1
~ (e (oa(t) | H (s 1P uls x(ga(s))as
t _e)a—1
+g(tx (0a(0)) | o, Puls, x(a(s))s
t e x—1
~ ol (palt) | E s Puls x (pals)) s

(t—s)*1
o)

(s, TP u(s, x(@3(s))) — (s, 1P u(s,x*(@3(s)))| ds

< k(t)x(@1(t) —x" (@7 (1) +[g(t, x(@2(1))) — g(t, x" (p2(1)))] L

(t—s)x1
o)

t
Flg(t X" (92 “””L

< KOI(@1(8) —x*(@1(t) +x*(@1(8) —x* (@7 (D)
ox—1
FLCealt) (a0 ¢ F(S;) (s, TP (s, xla(s))) — Fls, 0]+ [1(5,0)] ds
LW (@ ())|+GJ e O IPuls, x(ps(s)) ~ Puts, x (ps(s))]
0 )

< [kl [@r(t)) —x*(@u(t)] + (@1 (t) —x (@ ()]
t _ oya—1
+|L(t)|x(<pz(t))—x*(@z(tmj S ()11P (s, x(@s(s)))] + Flds
o Tle)
t (t_s)oc—l T (S_T)[B—l
'W(”'L r(B)

+ (ILWIX" (@2(t)) + G) J w(t, x(@3(1))) —ult,x*(ps3(1)))| ds dt

o T«
< K[ IIx — x| 4+ X" (@1(t)) —x* (@7 (1))]

(s, 1% u(s, x(@3(s)))| ds



Sh. M. Al-Issa, N. M. Mawed, ]J. Nonlinear Sci. Appl., 14 (2021), 181-195 190

ax—1

t
FILx =7 | Il [B(0hu(s, x(als)) — uls, O) -+ hafs, )] + Flas

)

(

t a—1 T —1

U +6) el |00 T ST wps(el) Lot as a

< Il [ =<l + e (r (1)) — " (0 ()]

t(g— gyl r (s—1)B-1
o T(B)

t
* (ti
ds+ (L[] + G) [[wl [x—x~] (@] L T

dsdt

+ (1L = x*[[[[wl[ [0 [[x] + U] L o)
Flt—s)*t

+ ||IL|||]x — x* FJ ds dr.
[T | . T

S)a—le(sT)B—l
(o) re)

Taking supremum over t,

[wllllelllix] +u] T*+F — FT ]

[x —x*[| < [ [[lx = x*]| + Ix* (@1 (t)) —x* (@7 (1))]] + HLHHX—X*H[ Ma+p+1) Moe+1)

Tx+B

Mot p+1)
[[Kl[lx* (@1(t)) —x* (7 (1))l

olllx||+U] Tx+k o ot ’
1 <||k||+HLH[”WH”r|| l|+-ul] + F(Foc—ztl ]+[HI—H|X”+G]HWH|9HFT+>

+ (Ll + G lwll[effx — 7|

I —x <

(c+B+1) (a+pB+1)
But from the continuity of solution x*, we have
lp1(t) —e1 (1) <& = KT (@1(t)) =x* (@1 (1)) < er.

Then
[klle1

[le uj Tokp x ot p
1— (HkH + |IL]| [HW” | ”ﬂi‘};l) + rl(cocT+1 |+ T+ G]HWHHQHr(;LEH))

e ="l < <e.

This means that the solution of Eq. (1.1) depends continuously on delay function ¢1. This completes the
proof.

By a similar way as done above, the continuous dependence of the solution of Eq. (1.1) on delay functions
@7 and @3 can be studied. O
5. Fractional hybrid differential equation

Here, we show that Theorem 3.1 could also be used to discuss existence result for initial value problem
of fractional hybrid differential equation (FHDE):

(B)—=k(tx(ei(t)))) _ =
{DLX (X I ) = f(t, IP u(t, x(@3(t))), tel=10,T], (5.1)
)

x(0) = k(0,x(0)),

where D* denotes the Riemann-Liouville fractional derivative of order «, 0 < < 1, IP is the Riemann-
Liouville fractional integral of order 3, 0 < < 1, where g(t,x(t)) € C(I x R,R\{0}), f(t,x(t)), u(t, x(t))
and k(t,x(t)) € C(I x R, R).

By a solution of the FHDE (5.1) we mean a function x € C(I,R) such that
x(t)—k(tx(@1(t)))

g(tx(2(t)))
(ii) x satisfies the equations in (5.1).

(i) the function t — is continuous for each x € C(J,R); and
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Theorem 5.1. Assume that the hypotheses (A1)-(As) of Thorem 3.1 hold. Then the FHDE (5.1) has at least one
solution defined on 1.

Proof. Let x(t) be a solution of Eq. (5.1). Applying Riemann-Liouville fractional integral of order « on
both sides of (5.1), we obtain

o (X0 =Kl x(1 (1))
e < ot x(@2(1)))

so, from Lemma 2.5 we conclude that

) — 1F(t, IP wu(t, x(@3(1))),

1—orx(t)—k(t,x(@i(t)))
x(t) =kt x(@1(1) T T gmxtomrony

gltx(ea(1)) ()

le—0

t(xil = I(xf(t, Iﬁu(t/X((p3(t)))/ te I'

. “X(t, 0)—k(0,x(0 .
Since X(té ki?g;{i%g;)))‘tzo = x(0) ,( x0) _ 9(0/2(0)) =0, (given g(0,x(0)) # 0), hence

= I%f(t, IPu(t, x(@3(t))),

ie.,
x(t) = g(t, x(@2() I (t, IPF2(t, x(@3())) + k(t, x(p1 (1)) teL

Thus, Eq. (1.1) holds.
Conversely, assume that x(t) satisfies Eq. (1.1), with this form

x(t) = k(t, x(@1(1))) = glt, x(@2(1)))I*F1(t, IPF(t, x(@3(t))) teL (5.2)
So dividing (5.2) by g(t, x(¢2(t))) and applying D* for both sides of (5.2), we obtain FHDE (5.1),

D <X(t) —k(t, x(1(t)))
g(t, x(@2(t)))

Again, substituting t = 0 in Eq. (1.1) (due to the fact that g(0,x(0)) # 0 and ¢;(0) =0, i =1,2,3.), then

) — 1% (¢, TP (¢, x(D(1)).

x(0) —k(0,x(0))

—0 as t—0.
g(0,x(0))

This yield that
x(0) = k(0,x(0)).

Now an application of Theorem 3.1 , we deduce that the FHDE (5.1) has at least one solution defined on
I. This completes the proof O
6. General quadratic integral equation of fractional order

In this section, we study the general quadratic integral equation of fractional order
m
x = gilt,x(t) I* fi(t, 1Pt ui(t,x(t), o, Bi € (0,1), 6.1)
i=1

by applying the following fixed point theorem point theorem due to Dhage.

Lemma 6.1 ([19]). Let m be a positive integer, and S* be a nonempty, closed, convex and bounded subset of a
Banach algebra X. Assume that the operators Ay : X — Xand By : $* — X, 1=1,2,...,m, satisfy

(1) foreachi€{1,2,...,m}, A are Lipschitzian with Lipschitz constant d;;
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(2) foreachie{1,2,...,m}, B are continuous and B;(S*) are precompact;
(3) foreachy € S*, x = Y_ ", Aix - Byy implies that x € S*.

Then, the operator equation x = Y i, Ayx - Bix has a solution provided that

m
ZFiéi <r, Vr>0,
i=1

where Fy = sup, .

Bix|, i=1,2,...,m
Eq. (6.1) is investigated under following assumptions.
(By) fi : IxR = R,and u; : IXxR = R, i1 =1,2,...,m, satisfy Caratheodory condition, i.e., f; and u;
are measurables in t for any x € R and continuous in x for almost all t € I. There exists functions
t — ai(t),t — bi(t),t = my(t), such that
Ifi(t,x)

lui(t, x)

| < ai(t)+ bi(t)x], 1=1,2,...,m, V(t,x) €e I xR,

|< mi(t), i=1,2,...,m, V(t,x)€IxR,
where a;(.), mi(.) € L! and b;(.) are measurable and bounded. And I¥ a;i(.) < Mjiand I¥ ¢i(.) <
Mai, V vi <oy, ¢ 20.

(B2) gi : IxR — R\{0}, i =1,2,...,m are continuous and there exists a positive function L;(t), with
norm ||L;|| satisfying

lgi(t,x) —gi(t,y)l <Li(t)x—yl, i=12,...,m

forallt € Tand x,y € R.
(B3) There exists a number r* > 0 such that

G M T YL | Gy ||by||My; TitBi—Y
Y IG + S T + e e
= . C 7
IL; H My T4 Y | +[|L] [[bal[Myy T B
1= (It + = 1§1+1) + e ey

where Gi = sup, . 19gi(t,0)|, and

i (HL | + L[] My T[] Hbi||M21T“i+Bi_%) <1
= Mo —yi+1) Mo +Bi—vi+1)

Theorem 6.2. Let the assumptions (By)-(Bs) be satisfied. Then the general Eq. (6.1) has at least one solution defined
on L

Proof. Let us define a subset S* of X = C(L,R) by
S i={xeX x| <}

Obviously, S* is nonempty, bounded, convex and closed subset of C(I,R). Consider the operators A; :
X —= X, Bi:S* = X defined by:

(Ax)(t) = gilt, x(1)),  (Bix)(t) = I fi(t, TPt uy(t, x(t))).

Then Eq. (6.1) can be written in the form:

We shall show that A; and B; satisfy all the conditions of Theorem 6.2.
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Step 1. As done before in the proof of Theorem 3.1, we can deduce that
A = Ayl < ILill[x —yll,

for all x,y € S*. This shows that A; are Lipschitz mappings on $* with the Lipschitz constants ||L;||.

Step 2. we show that B; are compact and continuous operators on S* into X.

First we show that B; are continuous on X. Let {x, } be a sequence in $* converging to a point x € S*.
Then by the Lebesgue dominated convergence theorem, let us assume that t € I and since wu;(t,x(t)) are
continuous in X, then wu;(t,xn(t)) converges to ui(t,x(t)), (see assumption (B;)) applying Lebesgue
dominated convergence theorem, we get

lim IP wui(s, xn(s)) = IP wi(s,x(s)).
n—oo
Also, since fi(t,x(t)) are continuousin x, then using the properties of the fractional-order integral and
applying Lebesgue dominated convergence theorem, we get
lim Bixn(t) = lim (1% fi(t, IP ui(t, xn(t))) = 1% fi(t, IP ui(t, x(t)) = Bix(t).
n—oo n—oo
Thus, Bixn, — Bix as n — oo uniformly on R, and hence B; are continuous operator on $* into $*.

Now, we show that B; are compact operator on S*. It is enough to show that B;(S*) are a uniformly
bounded and equicontinuous set in X. On the one hand, let x € S* be arbitrary. Then by hypothesis (B1)
and as done before in the proof of Theorem 3.1, we can get that

Box(0] < [ T s 1P x5S € Mg M s = K
o I« Mo —vi+1) Mo +PBi—vi+1)
for all t € I. Taking supermom over t,
T —Yi Txi+Bi—vi
[Bex(D] < Mg Mo —vi+1) F1beMa: Mo +Bi—vi+1) K

Then
IBix(t)]| <Ky,
for all x € S*. This shows that B; are uniformly bounded on S*.
Now, we proceed to show that Bi(S*) are also equicontinuous set in X. Let t;, t € I, and x € S*.

Without loss of generality assume that t; < t, then as done before in the proof of Theorem 3.1, we can
get that

Myi(to —t) %Y by |[Mai(tp — tg) X TRiYi

[(Bix)(t2) — (Bix)(t1)| < Moo —vi+ 1) Moy + TPy —vi+1)

Hence, for ¢; > 0, there exists a 4 > 0 such that
[t —tl <& = [(Bix)(t2) — (Bix)(t1)] < ey,

for all t1,to € I and for all x € S*. This shows that B;(S*) are an equicontinuous set in X. Now, the
set Bi(S*) are a uniformly bounded and equicontinuous set in X, so it is compact by the Arzela-Ascoli
theorem. As a result, B; are complete continuous operator on S*.

Step 3. The hypothesis (c) of Lemma 6.1 is satisfied. Let x € X and y € S* be arbitrary elements such
that x = A;xBiy. Then as done before in the proof of Theorem 3.1, we can get that

( My T ||bi||M21T“i+Bi_“> o
I'( =

||x(t)||<Z(||LiHT+Gi) —vi+tl)  T(wi+Bi—vitl)

i=1

Therefore, x € S*.
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Step 4. Finally we show that } " §;F; < 1, that is, last condition of Lemma 6.1 holds.
Since
My; ToYi N HbiHMZi Toxi+Bi—vi
Mog—vi+1)  Tlog+Bi—vi+1)

Fi = [|Bi(S*)|| = sup {SupBiX(t)l} <

xeS* | tel

and by (B3) we have
m
D> Ll Fo<1
i

with &; = |[Li|. Thus all the conditions of Lemma 6.1 are satisfied and hence the operator equation
x = Y " AixBix has a solution in S*. In consequence, Eq. (6.1) has a solution on 1. This completes the
proof. O

6.1. Some remarks and applications
As particular cases of Theorem 6.2 we can obtain theorems on the existence of solutions belonging to
the space C(I, R) for the following integral equations.

(i) Let m =1, then we have
x = g1(t,x(£)I* f1(t, 1P wy(t,x(t), tel o« B1e€(0,1)
(i) Let m =2, g1(t,x(t)) = ga(t,x(t)) = g(t,x(t)), and x; = & = «. Then, we have
x(t) = g(t, x(£)I¥(f1(t, IPruyg (t,x(t)) + f2(t, IP2un(t, x(1))), te€1, o, Bi€(0,1), i=1,2).

This kind of equation had studied in [12].
(iii) Let m =2, a1, 1 — 1, and f1(t, uq(t, x(t))) = 1, then we have

X(t) = tgl(t,X(t)) + 92(t/X(t))I(X2fZ(trIﬁzU’Z(t/X(t)))/ te Ir X2, BZ S (011)
Taking K(t,x(t)) =t gi(t,x(t)), g=¢g2, f="F, u=uy, &y =, and 2 = B, we get
x(t) = k(t,x(t)) + g(t,x(t))Io‘f(t,IBu(t,x((t))), tel, o, Bre(0,1). (6.2)

This equation had studied in Section 2.
o Let K(t,x(t)) =p(t) and g(t,x(t)) =1, in Eq. (6.2). Then we have

x(t) = p(t) + I%F(t, IPu(t, x((1))), tel a« Be(0,1).

This kind of equation had studied in [1, 8].
e Furthermore let IPu(t,x((t)) = x(t), in Eq. (6.2). Then we have

x = k(t,x(t)) + g(t, x(t)I*f(t,,x(t)), tel, a«ec(0,1).
Which is a well-known results had studied in [14].

7. Conclusion

In this paper, we proved some fixed point theorems for the nonlinear operator A x B 4 C in a Banach
algebra due to Dhage [5]. Results on the existence continuous dependence of solutions for Eq. (1.1) on
delay function ¢ also studied. It should be noted that in the same way, the reader can get the continuous
dependence of solutions for Eq. (1.1) on the other delay functions. Furthermore, one of our results is
applied to investigate sufficient conditions for existence of solutions to initial value problem of (FHDE)
(56.1). As a second problem we have developed some adequate conditions for the existence of at least
one solution to the general quadratic integral equation of fractional order Eq. (6.1) in a Banach algebra
by applying the fixed point theorem due to Dhage [19]. Our results improved and generalized some
interesting results in the literature.
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