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Abstract
In this paper, we discuss the stability of the sum form functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

g(pi)

m∑
j=1

f(qj) +

n∑
i=1

f(pi)

m∑
j=1

q
β
j

for all complete probability distributions (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, n > 3, m > 3 are fixed integers, f, g are real
valued mappings each having the domain I = [0, 1] and β is a fixed positive real power such that β 6= 1, 0β := 0, 1β := 1.
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1. Introduction

Over the last few years, functional equations with reference to the stability problem has emerged as a
new branch of research. Indeed, one of the stimulating aspect considered in this direction is to examine
the stability of those functional equations whose general solutions exist and are useful in characterizing
entropies. Captivated by the same here we have identified and discussed the stability of a Pexiderized
functional equation which characterizes an entropy of type (α,β) and whose general solutions have been
obtained.

Let R denotes the set of real numbers and I denotes the closed interval [0, 1]. For n = 1, 2, . . ., let

Γn =

{
(p1, . . . ,pn) : pi > 0, i = 1, . . . ,n;

n∑
i=1

pi = 1

}

denote the set of all finite n-component discrete probability distributions.
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A mapping a : I→ R is said to be additive on I or on the unit triangle

∆ = {(x,y) : 0 6 x 6 1, 0 6 y 6 1, 0 6 x+ y 6 1}

if it satisfies the equation a(x+ y) = a(x) + a(y) for all (x,y) ∈ ∆. A mapping A : R → R is said to be
additive on R if it satisfies the equation A(x+ y) = A(x) +A(y) for all x ∈ R, y ∈ R. It is known [3] that
if a mapping a : I → R is additive on I, then it has a unique additive extension A : R → R in the sense
that A is additive on R and A(x) = a(x) for all x ∈ I.

A mapping ` : I→ R is said to be logarithmic on I if it satisfies `(0) = 0 and `(xy) = `(x) + `(y) for all
x ∈ ]0, 1], y ∈ ]0, 1].

A mapping m : I → R is said to be multiplicative on I if it satisfies m(0) = 0, m(1) = 1, and
m(xy) = m(x)m(y) for all x ∈ ]0, 1[, y ∈ ]0, 1[.

The concept of entropy of type (α,β) was introduced by Behara and Nath [2]. For a probability
distribution (p1, . . . ,pn) ∈ Γn, an entropy of type (α,β) is defined as follows:

H
(α,β)
n (p1, . . . ,pn) =


(21−α − 21−β)−1

(
n∑
i=1

pαi −
n∑
i=1

p
β
i

)
, if α 6= β,

−2β−1
n∑
i=1

p
β
i log2 pi, if α = β,

(1.1)

where H(α,β)
n is a real valued mapping with domain Γn, n = 1, 2, . . ., α and β are fixed positive real powers

satisfying the conventions

0α := 0, 0β := 0, 1α := 1, 1β := 1, (1.2)

and 0 log2 0 := 0. The functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

pαi

m∑
j=1

f(qj) +

n∑
i=1

f(pi)

m∑
j=1

q
β
j , (1.3)

where f : I → R, (p1, . . . ,pn) ∈ Γn, and (q1, . . . ,qm) ∈ Γm plays a significant role in characterizing the
entropies of type (α,β) given by (1.1).

A wide variety of literature is available on entropies of type (α,β) which are axiomatically character-
ized by the functional equation (1.3). Many authors (Behara and Nath [2] and Kannappan [6, 7]) studied
the equation (1.3) and obtained its solutions by presuming some regularity conditions on the mapping
f : I→ R. In 1981, Losonczi and Maksa [10] obtained the general solutions of (1.3) for n > 3, m > 2 being
fixed integers and α 6= 1, β 6= 1. Recently few generalizations of (1.3) were observed by Kocsis [8], Nath
and Singh [14–16], and Singh and Dass [18].

Once the general solution of a sum form functional equation is obtained, the next open problem con-
cerning it is to check its stability. The problem of stability was raised by Ulam [19]. One of the intriguing
questions in reference to the stability problem for functional equations originated from a fundamental
question:

“When it is true that a mapping which is approximately satisfying a functional equation is in close proximity of
an exact solution of the same?”

Hyers [5] provided a partial affirmative answer to the Ulam’s open problem. Captivated by same, the
stability problem for the sum form functional equations was addressed affirmatively by Maksa [12]. The
essence of the paper of Maksa is that it bridges the gap between the stability problem for the functional
equations and the sum form functional equations (mentioned as Result 2.2 in Section 2).

The study of stability problem for functional equations is interesting as well as demanding. The
stability of sum form functional equations have been discussed by Maksa [12], Kocsis and Maksa [9],
Kocsis [8], and Nath and Singh [17]. The Stability of some of the generalizations of (1.3) have been
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examined but for many it still remains an open problem. These open problems seems to have missed
the attention of researchers working in this field. Hence this has inspired us to identify and examine
the stability of one of these generalizations whose general solutions exist. Our objective is to discuss the
stability of a Pexiderized form of (1.3), i.e.,

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

g(pi)

m∑
j=1

f(qj) +

n∑
i=1

f(pi)

m∑
j=1

q
β
j , (1.4)

where f : I → R, g : I → R, (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm and β 6= 1 is a fixed positive real power
satisfying (1.2). The general solution of (1.4) was obtained by Nath and Singh [14].

This paper is structured as follows. Section 1, briefly touches upon the notion of entropies of type
(α,β), sum form of functional equations characterizing them and stability of sum form functional equa-
tions followed by specifying the objective of this paper. In Section 2, we present few auxiliary results which
will be used in the upcoming section. In Section 3, we discuss the stability of the functional equation (1.4)
for n > 3, m > 3 being fixed integers.

2. Auxiliary results

In this section, we state few known results which will be used in the upcoming Section 3.

Result 2.1 ([11]). Suppose a mapping φ : I→ R satisfies the functional equation
n∑
i=1

φ(pi) = c for all (p1, . . . ,pn)

∈ Γn, n > 3 be a fixed integer and c a real constant. Then there exists an additive mapping a : R → R such that
φ(p) = a(p) − 1

na(1) +
c
n for all p ∈ I.

Result 2.2 ([12]). Let n > 3 be a fixed integer and ε be a fixed positive real number. Suppose a mapping φ̄ : I→ R

satisfies the functional inequality
∣∣∣∣ n∑
i=1

φ̄(pi)

∣∣∣∣ 6 ε for all (p1, . . . ,pn) ∈ Γn. Then there exist an additive mapping

a1 : R → R and a bounded mapping b1 : R → R such that |b1(p)| 6 18ε, b1(0) = 0 and φ̄(p) − φ̄(0) =
a1(p) + b1(p) for all p ∈ I.

Result 2.3 ([20]). If a real additive mapping f is bounded over an interval [a,b], then it must be linear, i.e., there
exists some real number c ′ such that f(p) = c ′p for all p ∈ R.

Result 2.4 ([9]). Let n > 3, m > 3 be fixed integers and ε be a fixed positive real constant. If a mapping f : I→ R

satisfies the functional inequality∣∣∣∣∣∣
n∑
i=1

m∑
j=1

f(piqj) −

n∑
i=1

p
β
i

m∑
j=1

f(qj) −

n∑
i=1

f(pi)

m∑
j=1

q
β
j

∣∣∣∣∣∣ 6 ε (2.1)

for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, β 6= 1 being fixed positive real power satisfying (1.2), then for all
p ∈ I, f(p) = pβ`(p) + a2(p) + b2(p), ` : I → R is a logarithmic mapping, a2 : R → R is an additive mapping
with a2(1) = 0, and b2 : R→ R is a bounded mapping.

3. The stability of functional equation (1.4)

In this section, the main result is as follows.

Theorem 3.1. Let n > 3, m > 3 be fixed integers and ε be a nonnegative real number. Suppose f : I → R,
g : I→ R be mappings satisfying the functional inequality∣∣∣∣∣∣

n∑
i=1

m∑
j=1

f(piqj) −

n∑
i=1

g(pi)

m∑
j=1

f(qj) −

n∑
i=1

f(pi)

m∑
j=1

q
β
j

∣∣∣∣∣∣ 6 ε (A)

for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, β 6= 1 being fixed positive real power such that (1.2) holds. Then for
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all p ∈ I, either

(a) (i) f(p) − f(0) = A0(p), A0(1) = −mf(0);
(ii) g is an arbitrary real valued mapping;

or
(b) (i) f(p) − f(0) = c1p

β +A1(p) +B1(p) with |B1(p)| 6 36εc̄, B1(0) = 0;
(ii) g(p) − g(0) = Ā1(p), Ā1(1) = 1 −ng(0);

or
(c) (i) f(p)−f(0)=A2(p),A2(1)=f(1)−f(0), f(1)+(m− 1)f(0) 6= 0;

(ii) g(p) − g(0) = Ā2(p) + B̄1(p) with |B̄1(p)| 6 18εc, B̄1(0) = 0;
or

(d) (i) f(p) = pβ`(p) +A3(p) +B2(p), A3(1) = 0;
(ii) g(p) − g(0) = pβ + Ā3(p), Ā3(1) = −ng(0);

or
(e) (i) f(p) − f(0) = c ′pβ +A4(p) +B3(p), d 6= 0 with |B3(p)| 6 18ε(2c0 + d

−1), B3(0) = 0;
(ii) g(p) − g(0) = Ā4(p) + B̄2(p) with |B̄2(p)| 6 18ε, B̄2(0) = 0;

or
(f) (i) f(p) − f(0) = d−1M(p) + c ′pβ +A5(p) +B4(p), d 6= 0 with |B4(p)| 6 36εc0, B4(0) = 0;

(ii) g(p) − g(0) =M(p) + Ā5(p), Ā5(1) = −[1 − g(1) + g(0)];

where Ai : R → R (i = 0, 1, 2, 3, 4, 5), Āi : R → R (i = 1, 2, 3, 4, 5) are additive mappings, Bi : R → R

(i = 1, 2, 3, 4), B̄i : R → R (i = 1, 2) are bounded mappings, ` : I → R is a logarithmic mapping, M : I → R

is a nonconstant nonadditive multiplicative mapping, 0 6= c, 0 6= c̄, 0 6= c0, 0 6= d, c ′ and c1 are arbitrary real
constants.

Before giving the proof of this theorem we need to prove the following lemma:

Lemma 3.2. Let n > 3, m > 3 be fixed integers and ε be a nonnegative real number. Suppose a mapping f : I→ R

satisfies the functional inequality∣∣∣∣∣∣
n∑
i=1

m∑
j=1

f(piqj) −

m∑
j=1

f(qj) −

n∑
i=1

f(pi)

m∑
j=1

q
β
j

∣∣∣∣∣∣ 6 ε (3.1)

for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm, β 6= 1 being fixed positive real power such that (1.2) is satisfied.
Then for all p ∈ I

f(p) − f(0) = c1p
β +A1(p) +B1(p), (3.2)

where A1 : R → R is an additive mapping, B1 : R → R is a bounded mapping with |B1(p)| 6 36εc̄, B1(0) = 0,
0 6= c̄ and c1 are arbitrary real constants.

Proof. Without any loss of generality we may assume that n > m. Let us put pm+1 = · · · = pn = 0 in
(3.1). We obtain∣∣∣∣∣∣

m∑
i=1

m∑
j=1

f(piqj)−

m∑
j=1

f(qj)−

[
m∑
i=1

f(pi)+(n−m)f(0)

]
m∑
j=1

q
β
j +m(n−m)f(0)

∣∣∣∣∣∣ 6 ε (3.3)

for all (p1, . . . ,pm) ∈ Γm, (q1, . . . ,qm) ∈ Γm. Now on interchanging pi and qj, i = 1, . . . ,m, j = 1, . . . ,m in
functional inequality (3.3), we have∣∣∣∣∣∣

m∑
i=1

m∑
j=1

f(piqj)−

m∑
i=1

f(pi)−

 m∑
j=1

f(qj)+(n−m)f(0)

 m∑
i=1

p
β
i +m(n−m)f(0)

∣∣∣∣∣∣ 6 ε. (3.4)
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Applying triangle inequality to inequalities (3.3) and (3.4), we get∣∣∣∣∣∣
1−

m∑
j=1

q
β
j

 m∑
i=1

f(pi)−

(
1−

m∑
i=1

p
β
i

)
m∑
j=1

f(qj)+(n−m)f(0)

 m∑
i=1

p
β
i −

m∑
j=1

q
β
j

∣∣∣∣∣∣6 2ε.

In view of our presumption that m > 3 and β 6= 1, it follows that 1−
m∑
j=1
q
β
j does not vanish identically

on Γm. Hence there exists a probability distribution (q∗1 , . . . ,q∗m) ∈ Γm such that 1 −
m∑
j=1
q
∗β
j 6= 0. Now

suppose c̄ =

[
1−

m∑
j=1
q
∗β
j

]−1

∈ R and using this in the above functional inequality, we get

∣∣∣∣∣
m∑
i=1

f(pi) − c1

m∑
i=1

p
β
i − c2

∣∣∣∣∣ 6 2εc̄,

where c1 ∈ R, c2 ∈ R and (p1, . . . ,pm) ∈ Γm. By Result 2.2, there exists an additive mapping A∗1 : R→ R

and a mapping B1 : R → R bounded by 36εc̄ with B1(0) = 0, such that f(p) − c1p
β − c2p − f(0) =

A∗1(p) + B1(p) for all p ∈ I. Thus, (3.2) holds where an additive mapping A1 : R → R is defined as
A1(p) = A

∗
1(p) + c2p.

It is noteworthy to mention that functional equation

n∑
i=1

m∑
j=1

f(piqj) −

m∑
j=1

f(qj) −

n∑
i=1

f(pi)

m∑
j=1

q
β
j = 0, (3.5)

where f : I → R, (p1, . . . ,pn) ∈ Γn and (q1, . . . ,qm) ∈ Γm, characterizes the nonadditive entropies of
degree β, which was introduced by Havrda and Charvát [4] as:

Hβn(p1, . . . ,pn) = (1 − 21−β)−1

(
1 −

n∑
i=1

p
β
i

)
,

where Hβn : Γn → R, n = 1, 2, . . ., 0 < β ∈ R, β 6= 1 satisfying the conventions (1.2). The functional
equation (3.5) has been discussed by Nath [13] but the stability was yet to be discussed. Coincidentally,
in this paper while discussing the stability of functional equation (1.4) we have examined the stability of
(3.5) also (mentioned as Lemma 3.2).

Proof of Theorem 3.1. We divide our discussion into three cases.

Case 1.
m∑
j=1
f(qj) vanishes identically on Γm.

In this case,
m∑
j=1
f(qj) = 0 for all (q1, . . . ,qm) ∈ Γm. By Result 2.1, there exists an additive mapping

A0 : R → R such that (a)(i) in Theorem 3.1 follows. Now on substituting (a)(i) in Theorem 3.1 in (A), we
observe that “g is an arbitrary real valued mapping”. Hence solution (a) is obtained.

Case 2. 1 −
n∑
i=1

g(pi) vanishes identically on Γn.

In this case, 1 −
n∑
i=1

g(pi) = 0 for all (p1, . . . ,pn) ∈ Γn. By Result 2.1, there exists an additive mapping

Ā1 : R → R such that (b)(ii) follows. Now on substituting (b)(ii) from Theorem 3.1 in (A), we obtain
inequality (3.1). By using Lemma 3.2, the solution (b)(i) from Theorem 3.1 holds and thus solution (b) of
(A) has been obtained.
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Case 3. Neither
m∑
j=1
f(qj) vanishes identically on Γm nor 1 −

n∑
i=1

g(pi) vanishes identically on Γn.

Now in this case, By Result 2.2 on functional inequality (A), we get

n∑
i=1

f(piq) −

n∑
i=1

g(pi)f(q) −

n∑
i=1

f(pi)q
β −nf(0) +

n∑
i=1

g(pi)f(0)

= A(p1, . . . ,pn;q) +B(p1, . . . ,pn;q),

(3.6)

where mapping A : Γn×R→ R is additive in its second variable and mapping B : Γn×R→ R is bounded
in its second variable by 18ε with B(p1, . . . ,pn; 0) = 0. Let x ∈ I and (r1, . . . , rn) ∈ Γn. Substituting
q = rtx, t = 1, . . . ,n successively in (3.6), adding the resulting n equations so obtained and then putting

the expression
n∑
t=1

f(rtx) obtained from (3.6), we have

n∑
i=1

n∑
t=1

f(pirtx) − (f(x) − f(0))
n∑
i=1

g(pi)

n∑
t=1

g(rt) −n
2f(0)

= A(p1, . . . ,pn; x) +
n∑
t=1

B(p1, . . . ,pn; rtx) +A(r1, . . . , rn; x)
n∑
i=1

g(pi)

+B(r1, . . . , rn; x)
n∑
i=1

g(pi) + x
β

[
n∑
i=1

g(pi)

n∑
t=1

f(rt) +

n∑
i=1

f(pi)

n∑
t=1

r
β
t

]
.

The left hand side of the above equation is commutative in pi and rt, i = 1, . . . ,n, t = 1, . . . ,n (see Acźel
[1, p. 59]). So should be its right hand side. Consequently, we get

A(p1, . . . ,pn; x)

[
1 −

n∑
t=1

g(rt)

]
−A(r1, . . . , rn; x)

[
1 −

n∑
i=1

g(pi)

]

=

n∑
i=1

B(r1, . . . , rn;pix) +B(p1, . . . ,pn; x)
n∑
t=1

g(rt) −

n∑
t=1

B(p1, . . . ,pn; rtx)

−B(r1, . . . , rn; x)
n∑
i=1

g(pi) + x
β

[
n∑
t=1

g(rt)

n∑
i=1

f(pi) −

n∑
i=1

g(pi)

n∑
t=1

f(rt)

+

n∑
t=1

f(rt)

n∑
i=1

p
β
i −

n∑
i=1

f(pi)

n∑
t=1

r
β
t

]
.

(3.7)

For fixed (p1, . . . ,pn) ∈ Γn and (r1, . . . , rn) ∈ Γn, the right hand side of (3.7) is bounded on I while the left
hand side is additive in x. Thus by Result 2.3, it follows that

[A(p1, . . . ,pn; x) − xA(p1, . . . ,pn; 1)]

[
1 −

n∑
t=1

g(rt)

]

= [A(r1, . . . , rn; x) − xA(r1, . . . , rn; 1)]

[
1 −

n∑
i=1

g(pi)

] (3.8)

for all x ∈ I, (p1, . . . ,pn) ∈ Γn and (r1, . . . , rn) ∈ Γn. Since 1 −
n∑
i=1

g(pi) does not vanish identically on

Γn, there exists a probability distribution (p∗1 , . . . ,p∗n) ∈ Γn such that 1 −
n∑
i=1

g(p∗i ) 6= 0. Putting pi = p∗i ,
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i = 1, . . . ,n in (3.8), we get

A(r1, . . . , rn; x) = a0(x)

[
1 −

n∑
t=1

g(rt)

]
+ xA(r1, . . . , rn; 1), (3.9)

where a0 : R → R is an additive mapping defined as a0(x) = [A(p∗1 , . . . ,p∗n; x) − xA(p∗1 , . . . ,p∗n; 1)]

×
[

1 −
n∑
i=1

g
(
p∗i
)]−1

with a0(1) = 0. Replacing q by 1 and pi by rt, i = 1, . . . ,n, t = 1, . . . ,n in (3.6),

using the fact that 1β := 1 and then substituting ‘A(r1, . . . , rn; 1)’ calculated from (3.6) in (3.9). We obtain

A(r1, . . . , rn; x) = a0(x)

[
1 −

n∑
t=1

g(rt)

]
− x

[
f(1)

n∑
t=1

g(rt)

−f(0)
n∑
t=1

g(rt) +nf(0) +B(r1, . . . , rn; 1)

] (3.10)

for all x ∈ I and (r1, . . . , rn) ∈ Γn. In order to obtain some more information regarding the bounded
mapping B, we substitute (3.10) in (3.7) and on performing required calculations, we obtain[

B(r1, . . . , rn; x)+xβ
n∑
t=1

f(rt)−x[f(1)+(n−1)f(0)+B(r1, . . . , rn; 1)]

]
n∑
i=1

g(pi)

=

[
B(p1, . . . ,pn; x)+xβ

n∑
i=1

f(pi)−x[f(1)+(n−1)f(0)+B(p1, . . . ,pn; 1)]

]
n∑
t=1

g(rt)

+

n∑
i=1

B(r1, . . . , rn;pix) −
n∑
t=1

B(p1, . . . ,pn; rtx) + xB(p1, . . . ,pn; 1)

− xB(r1, . . . , rn; 1) + xβ
[
n∑
t=1

f(rt)

n∑
i=1

p
β
i −

n∑
i=1

f(pi)

n∑
t=1

r
β
t

]
(3.11)

for all x ∈ I, (p1, . . . ,pn) ∈ Γn and (r1, . . . , rn) ∈ Γn. Functional equation (3.11) indicates that the proof

strongly depends on the coefficient of
n∑
i=1

g(pi). So we divide our discussion into two cases.

Case 3.1. Coefficient of
n∑
i=1

g(pi) vanishes identically.

In this case, functional equation (3.11) yields

B(r1, . . . , rn; x)=−xβ
n∑
t=1

f(rt)+ x[f(1)+(n− 1)f(0)+B(r1, . . . , rn; 1)] (3.12)

for all x ∈ I and (r1, . . . , rn) ∈ Γn.
Now, with the help of (3.10) and (3.12), functional equation (3.6) reduces to

n∑
i=1

H(piq) −H(q)

n∑
i=1

g(pi) = 0, (3.13)

where H : I→ R is defined as

H(x) = f(x) − f(0) − a0(x) − x(f(1) − f(0)) (3.14)
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for all x ∈ I. Clearly H(0) = 0 and H(1) = 0. By Result 2.1, functional equation (3.13) implies H(pq) −
H(q)(g(p) − g(0)) = E(p;q) where E : R× I → R is additive in first variable with E(1;q) = ng(0)H(q).
Clearly E(1; 1) = 0. Also for q = 1, it follows that H(p) = E(p; 1) for all p ∈ I. Thus from this and (3.14)
the solution (c)(i) from Theorem 3.1 follows by defining an additive mapping A2 : R → R as A2(x) =

E(x; 1) + a0(x) + x(f(1) − f(0)) with A2(1) = f(1) − f(0). Further we get,
m∑
j=1
f(qj) = f(1) + (m− 1)f(0).

Since
m∑
j=1
f(qj) does not vanish identically on Γm, we suppose 0 6= f(1) + (m− 1)f(0) = c−1 ∈ R. Moreover

on putting q1 = 1, q2 = . . . = qm = 0 in (A), we obtain∣∣∣∣∣
n∑
i=1

[
(m− 1)f(0) − c−1g(pi)

]∣∣∣∣∣ 6 ε
for all (p1, . . . ,pn) ∈ Γn. By Result 2.2, there exists an additive mapping Ā∗2 : R → R and a bounded
mapping B̄∗1 : R→ R with |B̄∗1(p)| 6 18ε and B̄∗1(0) = 0, such that −c−1 (g(p) − g(0)) = Ā∗2(p) + B̄

∗
1(p) for

all p ∈ I. Hence solution (c)(ii) from Theorem 3.1 is attained by defining an additive mapping Ā2 : R→ R

as Ā2(x) = −cĀ∗2(x) and a bounded mapping B̄1 : R → R as B̄1(x) = −cB̄∗1(x) such that |B̄1(x)| 6 18εc
with B̄1(0) = 0.

Case 3.2. Coefficient of
n∑
i=1

g(pi) does not vanish identically.

In this case, there is no loss of generality in assuming n > m. Let pm+1 = . . . = pn = 0 in (A), we have∣∣∣∣∣∣
m∑
i=1

m∑
j=1

f(piqj)−

[
m∑
i=1

g(pi)+(n−m)g(0)

]
m∑
j=1

f(qj)

−

[
m∑
i=1

f(pi)+(n−m)f(0)

]
m∑
j=1

q
β
j +m(n−m)f(0)

∣∣∣∣∣∣ 6 ε
(3.15)

for all (p1, . . . ,pm) ∈ Γm and (q1, . . . ,qm) ∈ Γm. Now, on interchanging pi and qj, i = 1, . . . ,m, j =
1, . . . ,m in functional inequality (3.15), we get∣∣∣∣∣∣

m∑
i=1

m∑
j=1

f(piqj)−

 m∑
j=1

g(qj)+(n−m)g(0)

 m∑
i=1

f(pi)

−

 m∑
j=1

f(qj)+(n−m)f(0)

 m∑
i=1

p
β
i +m(n−m)f(0)

∣∣∣∣∣∣ 6 ε.
(3.16)

By applying triangle inequality to functional inequalities (3.15) and (3.16), we get∣∣∣∣∣∣
 m∑
j=1

g(qj)+(n−m)g(0)−
m∑
j=1

q
β
j

 m∑
i=1

f(pi)−

[
m∑
i=1

g(pi)+(n−m)g(0)

−

m∑
i=1

p
β
i

]
m∑
j=1

f(qj)+(n−m)f(0)

 m∑
i=1

p
β
i −

m∑
j=1

q
β
j

∣∣∣∣∣∣ 6 2ε.

(3.17)

Now, if
m∑
j=1
g(qj) + (n−m)g(0) −

m∑
j=1
q
β
j vanishes identically on Γm, then by Result 2.1 there exists an

additive mapping Ā3 : R → R such that solution (d)(ii) from Theorem 3.1 holds. Further with the aid of
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(d)(ii) from Theorem 3.1 functional inequality (A) reduces to inequality (2.1). So, by Result 2.4 solution
(d)(i) from Theorem 3.1 follows where A3 : R→ R is an additive mapping and B2 : R→ R is a bounded
mapping. Hence solution (d) from Theorem 3.1 is attained.

Next, if
m∑
j=1
g(qj) + (n−m)g(0) −

m∑
j=1
q
β
j does not vanish identically on Γm, then there exist some

probability distribution (q∗1 , . . . ,q∗m) ∈ Γm for which
m∑
j=1
g(q∗j )+(n−m)g(0)−

m∑
j=1
q
∗β
j 6= 0. Suppose c0 =[

m∑
j=1
g
(
q∗j

)
+(n−m)g(0)−

m∑
j=1
q
∗β
j

]−1

∈ R. With the help of this, inequality (3.17) can be rewritten to the

form ∣∣∣∣∣
m∑
i=1

f(pi) − c3

m∑
i=1

g(pi) − c
′
m∑
i=1

p
β
i − c4

∣∣∣∣∣ 6 2εc0,

where 0 6= c3 ∈ R, c ′ ∈ R, c4 ∈ R and (p1, . . . ,pm) ∈ Γm. By Result 2.2, there exists an additive mapping
A∗4 : R→ R and a bounded mapping B∗3 : R→ R such that |B∗3(p)| 6 36εc0 with B∗3(0) = 0 satisfying

f(p) − c3g(p) − c
′pβ − c4p− f(0) + c3g(0) = A∗4(p) +B

∗
3(p) (3.18)

for all p ∈ I. Moreover as c3 6= 0, then from (3.18) it follows that

df(p) = g(p) + c∗pβ + Ā(p) + B̄(p), (3.19)

where 0 6= d = c−1
3 ∈ R, c∗ = c ′d ∈ R, Ā : R→ R is an additive mapping defined as Ā(x) = d[A∗4(x)+ c4x]

and B̄ : R → R is a bounded mapping defined as B̄(x) = d[f(0) − c3g(0) + B∗3(x)]. From (3.19), inequality
(A) can be rewritten in the form∣∣∣∣∣∣

n∑
i=1

m∑
j=1

g(piqj) −

n∑
i=1

g(pi)

 m∑
j=1

g(qj) + ĉ

m∑
j=1

q
β
j + Ā(1) +

m∑
j=1

B̄(qj)


−

[
Ā(1) +

n∑
i=1

B̄(pi)

]
m∑
j=1

q
β
j + Ā(1) +

n∑
i=1

m∑
j=1

B̄(piqj)

∣∣∣∣∣∣ 6 dε,
where ĉ = c∗+ 1 ∈ R. By Result 2.2, there exists a mapping a : Γn×R→ R additive in its second variable
and a mapping b : Γn ×R→ R bounded in its second variable by 18dε with b(0) = 0 such that

n∑
i=1

g(piq) −

n∑
i=1

g(pi)
[
g(q) + ĉqβ + Ā(1)q+ B̄(q) − g(0) − B̄(0)

]
−

[
Ā(1) +

n∑
i=1

B̄(pi)

]
qβ + Ā(1)q+

n∑
i=1

B̄(piq) −ng(0) −nB̄(0)

= a(p1, . . . ,pn;q) + b(p1, . . . ,pn;q)

(3.20)

with

a(p1, . . . ,pn; 1) =
n∑
i=1

g(pi)[1 − g(1) − ĉ− Ā(1) − B̄(1) + g(0) + B̄(0)]

−ng(0) −nB̄(0) − b(p1, . . . ,pn; 1).

(3.21)
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Let x ∈ I and (r1, . . . , rn) ∈ Γn. Replacing q by rtx, t = 1, . . . ,n successively in (3.20), summing the

resulting n equations so obtained and substituting the value of
n∑
t=1

g(rtx) from (3.20), we get

n∑
i=1

n∑
t=1

g(pirtx)−[g(x)+ĉxβ+Ā(1)x+B̄(x)−g(0)−B̄(0)]
n∑
i=1

g(pi)

n∑
t=1

g(rt)

+ Ā(1)x+
n∑
i=1

n∑
t=1

B̄(pirtx) −n
2g(0) −n2B̄(0) = a(p1, . . . ,pn; x)

+

n∑
t=1

b(p1, . . . ,pn; rtx) + xβ
{
n∑
i=1

g(pi)

[
Ā(1) +

n∑
t=1

B̄(rt) + ĉ

n∑
t=1

r
β
t

]

+

[
Ā(1) +

n∑
i=1

B̄(pi)

]
n∑
t=1

r
β
t

}
+ a(r1, . . . , rn; x)

n∑
i=1

g(pi) + b(r1, . . . , rn; x)
n∑
i=1

g(pi).

The left hand side of the above equation is symmetric in pi and rt, i = 1, . . . ,n, t = 1, . . . ,n. So should be
its right hand side. Consequently, we get

a(p1, . . . ,pn; x)

[
1 −

n∑
t=1

g(rt)

]
− a(r1, . . . , rn; x)

[
1 −

n∑
i=1

g(pi)

]

=

n∑
i=1

b(r1, . . . , rn;pix) + xβ
{
n∑
t=1

g(rt)

[
Ā(1) +

n∑
i=1

B̄(pi) + ĉ

n∑
i=1

p
β
i

]

+

[
Ā(1) +

n∑
t=1

B̄(rt)

]
n∑
i=1

p
β
i

}
+ b (p1, . . . ,pn; x)

n∑
t=1

g(rt)

−

n∑
t=1

b (p1, . . . ,pn; rtx) − xβ
{
n∑
i=1

g(pi)

[
Ā(1) +

n∑
t=1

B̄(rt) + ĉ

n∑
t=1

r
β
t

]

+

[
Ā(1) +

n∑
i=1

B̄(pi)

]
n∑
t=1

r
β
t

}
− b (r1, . . . , rn; x)

n∑
i=1

g(pi).

(3.22)

For fixed (p1, . . . ,pn) ∈ Γn and (r1, . . . , rn) ∈ Γn, the left hand side of (3.22) is additive in x but the right
hand side is bounded on I. Thus by Result 2.3, it follows that left hand side must be linear. We obtain

[a(p1, . . . ,pn; x) − xa(p1, . . . ,pn; 1)]

[
1 −

n∑
t=1

g(rt)

]
= [a(r1, . . . , rn; x) − xa(r1, . . . , rn; 1)]

[
1 −

n∑
i=1

g(pi)

]
.

Since 1−
n∑
t=1

g(rt) 6= 0, there exists a probability distribution (r∗1 , . . . , r∗n) ∈ Γn so that 1−
n∑
t=1

g(r∗t) 6= 0. Let

us replace rt by r∗t , t = 1, . . . ,n in the above equation and using this, it follows that

a(p1, . . . ,pn; x) = ā0(x)

[
1 −

n∑
i=1

g(pi)

]
+ xa(p1, . . . ,pn; 1), (3.23)

where ā0 : R → R is an additive mapping defined as ā0(x) = [a(r∗1 , . . . , r∗n; x) − xa(r∗1 , . . . , r∗n; 1)]

×
[

1 −
n∑
t=1

g (r∗t)

]−1

with ā0(1) = 0. From (3.21) and (3.23), we have

a(p1, . . . ,pn; x) = ā0(x)

[
1 −

n∑
i=1

g(pi)

]
+ x

{ n∑
i=1

g(pi)[1 − g(1) − ĉ− Ā(1)

− B̄(1) + g(0) + B̄(0)] −ng(0) −nB̄(0) − b(p1, . . . ,pn; 1)
} (3.24)
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for all x ∈ I and (p1, . . . ,pn) ∈ Γn. Now, on substituting (3.24) in (3.22), we obtain{
b (p1, . . . ,pn; x)+xβ

[
Ā(1)+

n∑
i=1

B̄(pi)+ĉ

n∑
i=1

p
β
i

]
+x[1 − g(1)

− (n− 1)g(0) −ĉ−Ā(1)−B̄(1)−(n− 1)B̄(0)− b(p1, . . . ,pn; 1)]
} n∑
t=1

g(rt)

=

{
b(r1, . . . , rn; x)+xβ

[
Ā(1)+

n∑
t=1

B̄(rt)+ĉ

n∑
t=1

r
β
t

]
+x[1 − g(1)

− (n− 1)g(0)−ĉ−Ā(1)−B̄(1)−(n− 1)B̄(0)−b(r1, . . . , rn; 1)]
} n∑
i=1

g(pi)

+x[b(r1, . . . , rn; 1)−b(p1, . . . ,pn; 1)]−
n∑
i=1

b(r1, . . . , rn;pix)

+

n∑
t=1

b(p1, . . . ,pn; rtx)−xβ
{[
Ā(1)+

n∑
t=1

B̄(rt)

] n∑
i=1

p
β
i −

[
Ā(1)+

n∑
i=1

B̄(pi)

] n∑
t=1

r
β
t

}

(3.25)

for all x ∈ I, (p1, . . . ,pn) ∈ Γn and (r1, . . . , rn) ∈ Γn.

If the coefficient of
n∑
t=1

g(rt) in (3.25) does not vanish identically, then by the boundedness of the

mappings b and B̄, it follows that
∣∣∣∣ n∑
t=1

g(rt)

∣∣∣∣ 6 ε for some positive real number ε. By Result 2.2, there exists

an additive mapping Ā4 : R→ R and a bounded mapping B̄2 : R→ R such that |B̄2(p)| 6 18ε and B̄2(0) =
0 satisfying (e)(ii) from Theorem 3.1. Also, from (3.18) and (e)(ii) from Theorem 3.1, solution (e)(i) from
Theorem 3.1 is attained by defining an additive mapping A4 : R → R as A4(x) = A∗4(x) + c4x+ c3Ā4(x)
and a bounded mapping B3 : R → R as B3(x) = B∗3(x) + c3B̄2(x). Thus solution (e) from Theorem 3.1 is
obtained.

In the remaining case, functional equation (3.25) yields

b(p1, . . . ,pn; x) = −xβ

[
Ā(1) +

n∑
i=1

B̄(pi) + ĉ

n∑
i=1

p
β
i

]
− x[1 − g(1) −ng(0)

+ g(0) − ĉ− Ā(1) − B̄(1) −nB̄(0) + B̄(0) − b(p1, . . . ,pn; 1)]

(3.26)

for all x ∈ I and (p1, . . . ,pn) ∈ Γn. Also, from (3.20), (3.24), and (3.26), it follows that

n∑
i=1

M(piq) −

n∑
i=1

M(pi)M(q) −

[
ĉ

(
1 −

n∑
i=1

p
β
i

)
−

n∑
i=1

B̄(pi)

+ g(1) + (n− 1)g(0) + B̄(1) + (n− 1)B̄(0) − 1
]
M(q) = 0,

(3.27)

where M : I→ R is a mapping defined as

M(x) = g(x) + ĉxβ + B̄(x) − g(0) − B̄(0) − ā0(x) + x[1 − g(1) − ĉ− B̄(1) + g(0) + B̄(0)] (3.28)

for all x ∈ I. By applying Result 2.1 on (3.27), there exists a mapping Ē : R× I → R, additive in the first
variable such that

M(pq) −M(p)M(q) + {ĉpβ + B̄(p) − B̄(0) − p[ĉ+ g(1) + (n− 1)g(0)
+ B̄(1) + (n− 1)B̄(0) − 1]}M(q) = Ē(p;q)

(3.29)
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with Ē(1;q) = −nB̄(0)M(q). Now let us put q = 1 in (3.29) and use M(1) = 1. We obtain

ĉpβ + B̄(p) − B̄(0) − p[ĉ+ g(1) + (n− 1)g(0) + B̄(1) + (n− 1)B̄(0) − 1] = Ē(p; 1). (3.30)

The left hand side of (3.30) is bounded on I, while the right hand side is additive in p. Thus by applying
Result 2.3, it follows that Ē(p; 1) = pĒ(1; 1). As a result from (3.30), it follows that

ĉpβ + B̄(p) − B̄(0) − p[ĉ+ B̄(1) − B̄(0)] = 0. (3.31)

Consequently from (3.28) and (3.31), it follows that

M(x) = g(x) − g(0) − ā0(x) + x[1 − g(1) + g(0)] (3.32)

for all x ∈ I. Clearly from (3.32), M(1) = 1 and M(0) = 0 as ā0(1) = 0 and ā0(0) = 0. Also on substituting
(3.31) in (3.29), we get

M(pq)−M(p)M(q)= Ē(p;q)+p[g(1)+(n− 1)g(0)+nB̄(0)−1]M(q) (3.33)

for all p ∈ I and q ∈ I.
Now, if Ē(p;q) + p[g(1) + (n − 1)g(0) + nB̄(0) − 1]M(q) = 0, then from (3.33) we conclude that M

is a nonconstant nonadditive mapping satisfying M(0) = 0, M(1) = 1 and M(xy) = M(x)M(y) for all
x ∈ ]0, 1[, y ∈ ]0, 1[. As a result from (3.32), (f)(ii) from Theorem 3.1 holds where an additive mapping
Ā5 : R → R is defined as Ā5(x) = ā0(x) − x[1 − g(1) + g(0)]. Furthermore, from (3.18) and (f)(ii) from
Theorem 3.1, solution (f)(i) from Theorem 3.1 follows where an additive mapping A5 : R → R is defined
as A5(x) = A

∗
4(x) + c4x+ c3Ā5(x) and a bounded mapping B4 : R→ R as B4(x) = B

∗
3(x).

If Ē(p;q) + p[g(1) + (n− 1)g(0) + nB̄(0) − 1]M(q) 6= 0, then there exists some p∗ ∈ I and q∗ ∈ I such
that

Ē(p∗;q∗) + p∗[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(q∗) 6= 0. (3.34)

Also, from (3.33) it can easily be verified that

M(pqr) −M(p)M(q)M(r) = Ē(r;pq) +M(r){Ē(p;q) + p[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(q)}

+ r[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(pq)

= Ē(rp;q) +M(q){Ē(r;p) + r[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(p)

+ rp[g(1) + (n− 1)g(0) +n B̄(0) − 1]}.

(3.35)

From (3.34) and (3.35), we get

M(r) = [Ē(p∗;q∗) + p∗[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(q∗)]−1

{
Ē(rp∗;q∗)

+M(q∗){Ē(r;p∗) + r[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(p∗)

+ rp∗[g(1) + (n− 1)g(0) +nB̄(0) − 1]}− Ē(r;p∗q∗)

− r[g(1) + (n− 1)g(0) +nB̄(0) − 1]M(p∗q∗)

}
.

This gives us that the mapping M is additive. Consequently (e)(ii) from Theorem 3.1 follows from (3.32)
by suitably defining additive and bounded mappings. Similarly, (e)(i) from Theorem 3.1 follows from
(e)(ii) from Theorem 3.1 and (3.18) by defining suitable additive and bounded mappings. This solution is
already included in (e) from Theorem 3.1.
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