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Abstract
The structure of the Cesàro spaces were investigated by various authors as cited in the text. The scenario of this manuscript

is to bring out the spaces C1
(
4sg
)

and C∞ [4sg] of Cesàro type for s ∈ N = {0, 1, 2, . . .}. We will study some of their basic
topological properties and obtain some inclusion relations concerning these spaces.
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1. Introduction

By Λ we write the set of all real or complex sequences and by sequence space we mean a subspace
of Λ. By N, we represent the set {0, 1, 2, . . .}; by R we mean Q ∪Qc, where Q is set of rational numbers
where as Qc set of irrational numbers and C will represent the set of all complex numbers as can be seen
in [7, 9]. We denote bounded sequences by l∞; convergent sequences by c and those sequences with limit
as zero by C0 as can be seen in [8, 10–13]. Also, let e = (1, 1, . . .).

We call a space Y to be FK space if it is a complete metric space with continuous coordinated pr : Y→ C

where pr(u) = ur for all u ∈ Y and r ∈N. A normed FK space is called a BK space as defined in [16, 23]
and etc.

We call a space V with a linear topology as a K-space provided each of the maps pj : V→ C given by
pj(v) = vj is continuous for each j ∈ N. A K-space V is said to be an FK-space provided it is complete
linear metric space. An FK-space whose topology is normable is called a BK-space. We say that an FK-
space V has AK (or has the AK property), if e(k) = (1, 1, . . .) is a Schauder bases for V. Note that FK spaces
play an important role in the theory of sequence spaces and matrix transformations the reason being that
matrix maps between FK space are continuous.

The spaces T(4), where
T(4) = {v = (vi) ∈ Λ : (4vi) ∈ T },

were introduced by Kizmaz [15], where T ∈ {l∞, c,C0} and 4vi = vi − vi−1.
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Next the author in [23] had studied it and considered it as follows. Consider the integer j > 0, then

∆j(H) =
{
v = (vk) :

(
∆jv
)
∈ H

}
, for H = l∞ , c and C0,

where ∆jvi = ∆j−1vi −∆
j−1vi+1 for all i ∈ N.

Also, in [24] the above space were generalized to the following spaces:

∆sg(H) =
{
v = (vj) ∈ Λ : (4sgvj) ∈ H

}
,

where

4sgvj = ∆s−1
g vj −∆

s−1
g vj+1 =

s∑
µ=0

(−1)µ
(
m

µ

)
gj+µvj+µ ∀ j ∈N.

The sequence spaces 4sg(H) are Banach spaces normed by

‖v‖∆ =

s∑
i=1

|givi|+ ‖∆sgv‖∞.

This space was further studied by many authors as can be seen in [5, 11] and many others.
A sequence space v = (vj) of complex numbers is said to be Cesàro summable of order 1 or (C, 1)

summable to η ∈ C if

lim
j
τj = η, where τj =

1
j

j∑
i=1

vi.

By C1 we shall denote the linear space of all (C, 1) summable sequences of complex numbers over C, i.e.,

C1 =

v = (vk) :

1
i

i∑
j=1

vj

 ∈ c
 .

It is easy to see that C1 is a BK space normed by

||v|| =
∑
i

∣∣∣∣∣∣1i
i∑
j=1

vj

∣∣∣∣∣∣ .
It was further studied by several authors as can be found in [3, 5, 18]. In [17], the author has introduced
the Cesàro sequence spaces Xp and X∞ of non-absolute type and has shown that Cesp ⊂ Xp is strict for
1 6 p 6∞.

As in [23], we call a sequence space V to be

(i) normal (or solid) if v = (vj) ∈ V whenever |vj| 6 |uj|, j > 1 for some u = (uj) ∈ V;
(ii) monotone if it contains the canonical preimages of all its step spaces;

(iii) sequence algebra if uv ∈ V whenever u, v ∈ V;
(iv) convergence free when, if v = (vj) ∈ V whenever u = (uj) ∈ V and vj = 0 whenever uj = 0.

2. Main section

In this division of the paper, we define the space C1
(
4sg
)

and C∞ [4sg], where g = (gj) is a sequence
such that gj 6= 0 ∀j ∈ N.

Following the authors cited in [1, 2, 6, 14, 19–22], we introduce the following spaces:

C1
(
4sg
)
=

{
v = (vk) : lim

i

1
i

n∑
i=1

(
4sgvk −α

)
= 0

}
,
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where α ∈ R and

C∞ [4sg] =
{
v = (vk) : sup

i

(
1
i

n∑
i=1

4sgvk
)
<∞} .

We now begin with the following theorem without proof.

Theorem 2.1. The spaces C1
(
4sg
)

and C∞ [4sg] are BK-spaces with the norm

‖v‖∆∞ =

s∑
j=1

|gjvj|+ sup
r

(
1
r

∣∣∣∣∣
r∑
i=1

4sgvi

∣∣∣∣∣
)

.

Theorem 2.2.

(i) `∞ (4s−1
g

)
⊂ C∞ [4sg] and is sharp.

(ii) c
(
4sg
)
⊂ C1

(
4sg
)

and is sharp.

Proof. We only prove part (i) and part (ii) will follow on similar lines. Let x ∈ `∞ (4m−1
g

)
, therefore we

can find a constant β with |4s−1
g vj| 6 β for all j ∈N. But, we can write

1
r

∣∣∣∣ r∑
i=1

4sgvi
∣∣∣∣ = 1

r

∣∣∣∣4sgv1 +4sgv2 + · · ·+4sgvr
∣∣∣∣

=
1
r

∣∣∣∣(∆m−1
g v1 −∆

m−1
g v2

)
+
(
∆m−1
g v2 −∆

m−1
g v3

)
+ · · ·+

(
∆m−1
g vr −∆

m−1
g vr+1

)∣∣∣∣
=

1
r

∣∣∣∣∆s−1
g v1 −∆

s−1
g vr+1

∣∣∣∣ 6 1
r

∣∣∆s−1
g v1

∣∣+ ∣∣∆s−1
g vr+1

∣∣ 6 2β
r
→ 0 (r→∞).

Hence, v ∈ C1
(
4sg
)

. To prove inclusion is sharp, choose g = e, then it is clear that (ts) ∈ C1
(
4sg
)

but
(ts) /∈ `∞ (4s−1

g

)
. For if vt = ts, then clearly 4s−1

g vt = (−1)ss!, but 4sgvt = (−1)s+1s!
(
t+ s−1

2

)
, ∀ t ∈

N.

We have following corollaries.

Corollary 2.3. C1
(
4sg
)

is a closed subspace of C∞ (4sg) .

Corollary 2.4. C1
(
4sg
)

is a nowhere dense subset of C∞ (4sg).
Corollary 2.5. C∞ (4sg) is not separable, in general and has no Schauder basis.

Proof. Hint: We know that if a normed space has a Schauder basis, then it is separable.

Corollary 2.6. C1
(
4sg
)

is not normal (solid) and hence neither perfect nor convergence free.

Proof. To prove this result, we let g = e, s = 1 and define v = (vj) = (j− 1) and u = (uj) =
(
(−1)j(j− 1)

)
,

it is then trivial that
v ∈ C1

(
4sg
)

but u /∈ C1
(
4sg
)

,

although |uj| 6 |vj|, j > 1. Consequently, C1
(
4sg
)

is not normal.
Since C1

(
4sg
)

is not normal, hence we conclude that it is neither perfect nor convergence free because
every perfect space and also every convergence free space should be normal [4].

Corollary 2.7. C1
(
4sg
)

is neither monotone nor a sequence algebra.
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Proof. To prove this result, we let g = e, s = 1 and define v = (vj) = (j) ∈ C1
(
4sg
)

and define u = (uj) by

u(j) =

{
vj, for j being even,
0, for j is odd,

that is, u = (0, 2, 0, 4, . . .). Then,
(
4sguj

)
= (−2, 2,−4, 4,−6, 6, . . .) and thus

(
4sguj

)
/∈ C1 this means that

(uj) /∈ C1
(
4sg
)

and C1
(
4sg
)

is not monotone.
Now in order to prove it is not sequence algebra, we choose g = e, s = 1, v = u = (j) and it is observed

that u, v ∈ C1
(
4sg
)

but uv ∈ (j2) /∈ C1
(
4sg
)

.

Theorem 2.8. The space C1
(
4sg
)

does not attain AK property.

Proof. For the sequence v = (vj) = (ts) = (ts) = (1s, 2s, . . .) ∈ C1
(
4sg
)

with g = e, consider its jth section
as v[j] = (1s, 2s, . . . , js, 0, 0, . . .) . Then it is clear that

‖v− vj‖∆∞ = ‖
(
0, 0 . . . , js+1, js+2, . . .

)
‖∆∞ =

1
j

[
(−1)s+1s!

(
(j+ 1) +

s− 1
2

)]
9 0 as j→∞.
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[17] P.-N. Ng, P.-Y. Lee, Cesàro sequences spaces of non-absolute type, Comment Math. Prace Math., 20 (1978), 429–433. 1
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[22] J.-S. Shiue, On the Cesàro sequence spaces, Tamkang J. Math., 1 (1970), 19–25. 2
[23] B. C. Tripathy, A. Esi, A new type of difference sequence spaces, Int. J. Sci. Technol., 1 (2006), 11–14. 1
[24] B. C. Tripathy, A. Esi, B. K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math.,
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