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Abstract
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1. Introduction

This paper discusses coincidences between multi-valued maps with continuous selections and compact
admissible maps. In particular we present a general Granas type topological transversality theorem
[5, 6, 9], a general Leray-Schauder type alternatives [6, 9] and also a general Furi-Pera type result [3]
for coincidences. Even though some of the results presented here could be modified from the results of
O’Regan [9] (Φ replaced by Φ−1 there) however we feel it is more natural to construct this theory from
the well known fixed point result of Gorniewicz [4, 8]. To motivate our theory we present below a very
simple coincidence result in a general setting.

Now we describe the maps considered in this paper. Let H be the C̆ech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q-
dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f) is
the induced linear map f? = {f?q} where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X, the set p−1(x) is acyclic;
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(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let φ : X→ Y be a multi-valued map (note for each x ∈ X we assume φ(x) is a nonempty subset of Y). A
pair (p,q) of single valued continuous maps of the form X

p← Γ
q→ Y is called a selected pair of φ (written

(p,q) ⊂ φ) if the following two conditions hold:

(i) p is a Vietoris map;
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [4]. A upper semi-continuous map φ : X → Y with
closed values is said to be admissible (and we write φ ∈ Ad(X, Y)) provided there exists a selected pair
(p,q) of φ.

Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and G a multi-function. We
say G ∈ DKT(Z,W) [1, 7] if W is convex and there exists a map S : Z→W with co(S(x)) ⊆ G(x) for x ∈ Z,
S(x) 6= ∅ for each x ∈ Z and S−1(w) = {z ∈ Z : w ∈ S(z)} is open (in Z) for each w ∈W.

By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y
is an extension space for Q (written Y ∈ ES(Q) if for all X ∈ Q and all K ⊆ X closed in X, any continuous
function f0 : K→ Y extends to a continuous function f : X→ Y.

Now we recall the following fixed point result from the literature [4, 8].

Theorem 1.1. Let X ∈ ES(compact) and Ψ ∈ Ad(X,X) a compact map. Then there exists a x ∈ X with x ∈ Ψ(x).

We note that one can use Theorem 1.1 to generate coincidence results. For convenience we present
one simple result to illustrate the strategy.

Theorem 1.2. Let X and Y be subsets of a Hausdorff topological vector space E with X convex and Y paracompact.
Suppose F ∈ Ad(X, Y) is a compact map and G ∈ DTK(Y,X). In addition suppose Y ∈ ES(compact) (respectively,
X ∈ ES(compact)). Then there exists a y ∈ Y with G(y) ∩ F−1(y) 6= ∅ (respectively, there exists a x ∈ X with
G−1(x)∩ F(x) 6= ∅).

Proof. Since Y is paracompact, then from [1, 7] there exists a selection g ∈ C(Y,X) (note θ ∈ C(Y,X) if
θ : Y → X is a continuous (single valued) map) of G. Now Fg ∈ Ad(Y, Y) (respectively, gF ∈ Ad(X,X)) is
a compact map. Now Theorem 1.1 guarantees that there exists a y ∈ Y with y ∈ Fg(y) (respectively, there
exists a x ∈ X with x ∈ gF(x)).

Remark 1.3. In Theorem 1.2 one could replace F is a compact map with G is a compact map.

2. Continuation theory

Let E be a completely regular topological space and U an open subset of E.

Definition 2.1. We say Φ ∈ B(E,E) if Φ ∈ Ad(E,E) and Φ is a compact map.

Remark 2.2. An example of a map Φ ∈ Ad(E,E) is if Φ : E → K(E); here K(E) denotes the family of
nonempty, compact, acyclic subsets of E. In this paper we consider Φ ∈ B(E,E) but we note if we wish
one could consider Φ ∈ B(E,U) throughout the paper; here U denotes the closure of U in E.

Definition 2.3. We say F ∈ A(U,E) if F : U → 2E and there exists a continuous (single valued) selection
f : U→ E (we write f ∈ C(U,E)) of F.

Remark 2.4.

(i). Suppose E is a topological vector space and U is paracompact. An example of a map F ∈ A(U,E) is
F ∈ DKT(U,E). As an aside, note metrizable spaces are paracompact and closed subsets of paracompact
spaces are paracompact.
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(ii). In this paper we always assume Φ ∈ B(E,E) is a compact map and F ∈ A(U,E) if there exists
a continuous selection of F. However it is easy to adjust the thory if we assume Φ ∈ B(E,E) means
Φ ∈ Ad(U,E) and F ∈ A(U,E) means there exists a continuous compact selection of F.

In this paper we fix a Φ ∈ B(E,E).

Definition 2.5. We say F ∈ A∂U(U,E) (respectively, f ∈ C∂U(U,E)) if F ∈ A(U,E) (respectively, f ∈ C(U,E))
with F(x) ∩Φ−1(x) = ∅ (respectively, x /∈ Φ(f(x))) for x ∈ ∂U; here ∂U denotes the boundary of U in E
and Φ−1(x) = {z ∈ E : x ∈ Φ(z)}.

Definition 2.6. Let f,g ∈ C∂U(U,E). We say f ∼= g in C∂U(U,E) if there exists a continuous map h :
U× [0, 1]→ E with x /∈ Φ(ht(x)) for x ∈ ∂U and t ∈ (0, 1) (here ht(x) = h(x, t)), h0 = f and h1 = g.

Remark 2.7. Note ∼= in C∂U(U,E) is an equivalence relation.

Definition 2.8. Let F,G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if for any selection f ∈ C∂U(U,E)
(respectively, g ∈ C∂U(U,E)) of F (respectively, G) we have f ∼= g in C∂U(U,E).

Definition 2.9. We say F ∈ A∂U(U,E) is essential in A∂U(U,E) if for any selection f ∈ C∂U(U,E) of F and
any map j ∈ C∂U(U,E) with j|∂U = f|∂U there exists a x ∈ U with x ∈ Φ(j(x)).

Remark 2.10. If F ∈ A∂U(U,E) is essential in A∂U(U,E) and if f ∈ C∂U(U,E) is any selection of F, then
there exists a x ∈ U with x ∈ Φ(f(x)) (take j = f in Definition 2.9) and so F(x)∩Φ−1(x) 6= ∅.

Theorem 2.11. Let E be a completely regular topological space, U an open subset of E, F ∈ A∂U(U,E) and
G ∈ A∂U(U,E) is essential in A∂U(U,E). Also suppose{

for any selection f ∈ C∂U(U,E) (respectively, g ∈ C∂U(U,E))
of F (respectively, of G) and any map j ∈ C∂U(U,E) with j|∂U = f|∂U we have g ∼= j in C∂U(U,E).

(2.1)

Then F is essential in A∂U(U,E).

Proof. Let f ∈ C∂U(U,E) be any selection of F and consider any map j ∈ C∂U(U,E) with j|∂U = f|∂U. We
must show there exists an x ∈ U with x ∈ Φ(j(x)). Let g ∈ C∂U(U,E) be any selection of G. Now (2.1)
guarantees that there is a continuous map h : U× [0, 1] → E with x /∈ Φ(ht(x)) for x ∈ ∂U and t ∈ (0, 1),
h0 = g and h1 = j. Let

K =
{
x ∈ U : x ∈ Φ(ht(x)) for some t ∈ [0, 1]

}
and D =

{
(x, t) ∈ U× [0, 1] : x ∈ Φ(ht(x))

}
.

Note D 6= ∅ (take t = 0 and note G ∈ A∂U(U,E) is essential in A∂U(U,E)) and D is closed (note Φ is upper
semi-continuous and h is continuous) and so compact (note Φ is a compact map). Let π : U× [0, 1] → U

be a projection. Now K = π(D) is closed (see Kuratowski’s theorem [2]) and so in fact compact (recall
projections are continuous). Also note K ∩ ∂U = ∅ (since x /∈ Φ(ht(x)) for x ∈ ∂U and t ∈ (0, 1)) so
since E is Tychonoff there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let
r(x) = h(x,µ(x)) = hµ(x)(x) for x ∈ U. Note r ∈ C∂U(U,E) with r|∂U = h0|∂U = g|∂U. Now since G is
essential in A∂U(U,E) there exists a x ∈ U with x ∈ Φ(r(x)), i.e., x ∈ Φ(hµ(x)(x)). Thus x ∈ K so µ(x) = 1
and x ∈ Φ(h1(x)) = Φ(j(x)), as required.

Now we present the topological transversality theorem for A∂U(U,E) maps. Let E be a topological
vector space (recall topological vector sapces are completely regular). Next note

if φ,ψ ∈ C∂U(U,E) with φ|∂U = ψ|∂U, then φ ∼= ψ in C∂U(U,E); (2.2)

to see this let h(x, t) = (1− t)φ(x) + tψ(x) and note x /∈ Φ(ht(x)) for x ∈ ∂U and t ∈ (0, 1) (since if x ∈ ∂U
and t ∈ (0, 1), then since φ|∂U = ψ|∂U we have Φ(ht(x)) = Φ((1 − t)ψ(x) + tψ(x)) = Φ(ψ(x))).
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Theorem 2.12. Let E be a topological vector space and U an open subset of E. Suppose F and G are two maps
in A∂U(U,E) with F ∼= G in A∂U(U,E). Now F is essential in A∂U(U,E) if and only if G is Φ-essential in
A∂U(U,E). (In Theorem 2.12 if E a topological vector space is replaced by E a completely regular topological space,
then the result in Theorem 2.12 again holds provided we assume (2.2).)

Proof. Assume G is essential in A∂U(U,E). We will apply Theorem 2.11 here. Let f ∈ C∂U(U,E) be any
selection of F and let g ∈ C∂U(U,E) be any selection of G and consider any map j ∈ C∂U(U,E) with
j|∂U = f|∂U. Now since F ∼= G in A∂U(U,E) we have f ∼= g in C∂U(U,E). Also from (2.2) (here φ = j and
ψ = f) we have j ∼= f in C∂U(U,E). Combining gives g ∼= j in C∂U(U,E), i.e., (2.1). Thus Theorem 2.11
guarantees that F is essential in A∂U(U,E). A similar argument shows if F is essential in A∂U(U,E), then
G is essential in A∂U(U,E).

Next we present an example of an essential in A∂U(U,E) map which will enable us to present a
Leray-Schauder type alternative.

Theorem 2.13. Let E be a locally convex metrizable topological vector space, U an open subset of E and Φ(0) ⊆ U.
Then the zero map is essential in A∂U(U,E).

Proof. Consider any selection g ∈ C∂U(U,E) of the zero map (note g = 0). Now consider any map
j ∈ C∂U(U,E) with j|∂U = 0|∂U. We must show there exists a x ∈ U with x ∈ Φ(j(x)). Let

ψ(x) =

{
j(x), x ∈ U,
0, x ∈ E\U.

Now ψ ∈ C(E,E) (a map θ ∈ C(E,E) if θ : E → E is a continuous map) so Φψ is an admissible compact
map. Then Theorem 1.1 (note from Dugundji extension theorem every locally convex metrizable topo-
logical vector space is an AR) guarantees that there exists a x ∈ E with x ∈ Φ(ψ(x)). If x ∈ E\U, then
x ∈ Φ(0), a contradiction since Φ(0) ⊆ U. Thus x ∈ U so x ∈ Φ(j(x)).

Theorem 2.14. Let E be a locally convex metrizable topological vector space, U an open subset of E, F ∈ A∂U(U,E),
Φ(0) ⊆ U and tF(x) ∩Φ−1(x) = ∅ for x ∈ ∂U and t ∈ (0, 1). Then F is essential in A∂U(U,E) (so in particular
there exists a x ∈ U with F(x)∩Φ−1(x) 6= ∅).

Proof. From Theorem 2.13 we know that the zero map is essential in A∂U(U,E). We will apply Theorem
2.11 to show F is essential in A∂U(U,E). Note that topological vector spaces are completely regular so we
need only to show (2.1) with G = 0 (so automatically g = 0). Let f ∈ C∂U(U,E) be any selection of F and
consider any map j ∈ C∂U(U,E) with j|∂U = f|∂U. Now let h(x, t) = tj(x) and note j ∼= 0 in C∂U(U,E)
(note if x ∈ ∂U and t ∈ (0, 1), then x /∈ Φ(ht(x)) since j|∂U = f|∂U gives Φ(ht(x)) = Φ(tj(x)) = Φ(tf(x))).
Thus (2.1) holds.

Remark 2.15. Theorem 2.14 gives a strong conclusion, namely F is essential in A∂U(U,E). The usual
conclusion in a Leray-Schauder type alternative is that there exists a x ∈ U with F(x) ∩Φ−1(x) 6= ∅. We
note that this can be proved directly without any reference to essential maps. Let f ∈ C(U,E) be any
selection of F and let

K = {x ∈ U : x ∈ Φ(tf(x)) for some t ∈ [0, 1]}.

Note K 6= ∅ (take t = 0 and note Φ(0) ⊆ U) is compact and K ∩ ∂U = ∅ (since tF(x) ∩Φ−1(x) = ∅ for
x ∈ ∂U and t ∈ (0, 1)) so there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let
θ : E→ E be given by

θ(x) =

{
µ(x)f(x), x ∈ U,
0, x ∈ E\U.

Now θ ∈ C(E,E) so Φθ is an admissible compact map. Then Theorem 1.1 guarantees that there exists
a x ∈ E with x ∈ Φ(θ(x)). If x ∈ E\U, then x ∈ Φ(0), a contradiction since Φ(0) ⊆ U. Thus x ∈ U so
x ∈ Φ(µ(x)f(x)) and as a result x ∈ K. Thus µ(x) = 1 and so x ∈ Φ(f(x)) so F(x)∩Φ−1(x) 6= ∅.
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A special case of Remark 2.15 (i.e., when A = C) is the following.

Theorem 2.16. Let E be a locally convex metrizable topological vector space, U an open subset of E, f ∈ C∂U(U,E),
Φ(0) ⊆ U and x /∈ Φ(tf(x)) for x ∈ ∂U and t ∈ (0, 1). Then there exists a x ∈ U with x ∈ Φ(f(x)).

Remark 2.17. There is an obvious analogue of Theorem 2.14, when A = C also.

Now we prove a Furi-Pera type result. Here E will be a locally convex metrizable topological vector
space and Q a closed convex subset of E. In our next result we assume ∂Q = Q (the case when int(Q) 6= ∅
is also easily handled; see Remark 2.19).

Theorem 2.18. Let E be a locally convex metrizable topological vector space,Q a closed convex subset of E, ∂Q = Q,
F ∈ A(Q,E) and Φ ∈ B(E,E) with Φ(0) ⊆ Q. In addition assume{

if {(xj, λj)}∞j=1 is a sequence in ∂Q× [0, 1] converging
to (x, λ) with λF(x)∩Φ−1(x) 6= ∅ and 0 6 λ < 1, then {Φ(λjF(xj))} ⊆ Q for j sufficiently large.

(2.3)

Then there exists a x ∈ Q with F(x)∩Φ−1(x) 6= ∅.

Proof. From Dugundji’s theorem we know there exists a retraction r : E → Q. Let f ∈ C(Q,E) be a
selection of F and let

Ω = {x ∈ E : x ∈ Φ(f(r(x))}.

Note Ω 6= ∅ from Theorem 1.1 (note Φfr is a compact admissibe map) and Ω is compact. We claim
Ω∩Q 6= ∅. To show this we argue by contradiction. Suppose Ω∩Q = ∅. Then since Ω is compact and Q
is closed, there exists a δ > 0 with dist(Q,Ω) > δ. Choose m ∈ {1, 2, . . .} with 1 < δm and let

Ui =

{
x ∈ E : d(x,Q) <

1
i

}
for i ∈ {m,m+ 1, . . . , };

here d is the metric associated with E. Fix i ∈ {m,m+ 1, . . .}. Since dist(Q,Ω) > δ we see that Ω∩Ui = ∅.
Now Theorem 2.16 (note fr ∈ C(E,E) and Φ(0) ⊆ Q ⊆ Ui) guarantees that there exists λi ∈ (0, 1) and
yi ∈ ∂Ui with yi ∈ Φ(λifr(yi)). Since yi ∈ ∂Ui we have {Φ(λifr(yi))} 6⊆ Q for i ∈ {m,m+ 1, . . .} and so

{Φ(λiFr(yi))} 6⊆ Q for i ∈ {m,m+ 1, . . .}. (2.4)

Let
D = {x ∈ E : x ∈ Φ(λfr(x)) for some λ ∈ [0, 1]}.

Now D 6= ∅ (see Theorem 1.1 and take λ = 1) and D is compact. This together with

d(yj,Q) =
1
j

and |jj| 6 1 for j ∈ {m,m+ 1, . . .}

implies that we may assume without loss of generality that λj → λ? ∈ [0, 1] and yj → y? ∈ ∂Q. In addition
since f and r are continuous, Φ is upper semi-continuous and yj ∈ Φ(λjfr(yj)) we have y? ∈ Φ(λ?fr(y?)).
Thus since r(y?) = y? we have y? ∈ Φ(λ?fy?). If λ? = 1, then y? ∈ Φ(fy?)(= Φ(fr(y?)), which contradicts
Ω∩Q = ∅. Thus 0 6 λ? < 1. Now (2.3) with xj = r(yj) (note yj ∈ ∂Uj and r(yj) ∈ ∂Q) and x = y? = r(y?)
and y? ∈ Φ(λ?f(y?)) (so λ?F(y?)∩Φ−1(y?) 6= ∅) implies

{Φ(λjFxj)} ⊆ Q for j sufficiently large.

This contradicts (2.4). Thus Ω ∩Q 6= ∅ so there exists a x ∈ Q with x ∈ Φ(fr(x)) = Φ(f(x)), so F(x) ∩
Φ−1(x) 6= ∅.
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Remark 2.19. In Theorem 2.18 we assumed ∂Q = Q. However this is easily removed since if int(Q) 6= ∅
(assume without loss of generality that 0 ∈ int(Q)), then one can take the retraction r : E→ Q as

r(x) =
x

max{1,µ(x)}
for x ∈ E,

where µ is the Minkowski functional on Q (i.e., µ(x) = inf{α > 0 : x ∈ αQ}). Note r(z) ∈ ∂Q if z ∈ E\Q.
The argument in Theorem 2.18 now remains the same (once one notes that r(yj) in the proof is in ∂Q).

A special case of Theorem 2.18 and Remark 2.19 (i.e., when A = C) is the following.

Theorem 2.20. Let E be a locally convex metrizable topological vector space, Q a closed convex subset of E,
f ∈ C(Q,E) and Φ ∈ B(E,E) with Φ(0) ⊆ Q. In addition assume{

if {(xj, λj)}∞j=1 is a sequence in ∂Q× [0, 1] converging
to (x, λ) with x ∈ Φ(λf(x)) and 0 6 λ < 1, then {Φ(λjf(xj))} ⊆ Q for j sufficiently large.

Then there exists a x ∈ Q with x ∈ Φ(f(x)).
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