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Abstract
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maps with continuous selections and compact admissible maps.
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1. Introduction

This paper discusses coincidences between multi-valued maps with continuous selections and compact
admissible maps. In particular we present a general Granas type topological transversality theorem
[5, 6, 9], a general Leray-Schauder type alternatives [6, 9] and also a general Furi-Pera type result [3]
for coincidences. Even though some of the results presented here could be modified from the results of
O’Regan [9] (® replaced by ® ! there) however we feel it is more natural to construct this theory from
the well known fixed point result of Gorniewicz [4, 8]. To motivate our theory we present below a very
simple coincidence result in a general setting.

Now we describe the maps considered in this paper. Let H be the Cech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the g-
dimensional Cech homology group with compact carriers of X. For a continuous map f : X — X, H(f) is
the induced linear map f, = {f,q} where f,q : Hq(X) — Hq(X). A space X is acyclic if X is nonempty,
Hq(X) =0 for every q > 1, and Hp(X) ~ K.

Let X, Y and I" be Hausdorff topological spaces. A continuous single valued map p : ' — X is called a
Vietoris map (written p : I' = X) if the following two conditions are satisfied:

(i) for each x € X, the set p~!(x) is acyclic;
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(ii) p is a perfect map, i.e., p is closed and for every x € X the set p~!(x) is nonempty and compact.

Let ¢ : X = Y be a multi-valued map (note for each x € X we assume ¢(x) is a nonempty subset of Y). A

pair (p, q) of single valued continuous maps of the form X &1 % Yis called a selected pair of ¢ (written
(p, q) C ¢) if the following two conditions hold:

(i) p is a Vietoris map;
(i) q(p~'(x)) C d(x) for any x € X.

Now we define the admissible maps of Gorniewicz [4]. A upper semi-continuous map ¢ : X — Y with
closed values is said to be admissible (and we write ¢ € Ad(X,Y)) provided there exists a selected pair
(p,q) of ¢.

Let Z and W be subsets of Hausdorff topological vector spaces Y; and Y, and G a multi-function. We
say G € DKT(Z, W) [1, 7] if W is convex and there exists a map S : Z — W with co(S(x)) C G(x) for x € Z,
S(x) # 0 for each x € Z and S~'(w) ={z € Z:w € S(z)} is open (in Z) for each w € W.

By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y
is an extension space for Q (written Y € ES(Q) if for all X € Q and all K C X closed in X, any continuous
function fp : K — Y extends to a continuous function f: X — Y.

Now we recall the following fixed point result from the literature [4, 8].

Theorem 1.1. Let X € ES(compact) and ¥ € Ad(X, X) a compact map. Then there exists a x € X with x € Y(x).

We note that one can use Theorem 1.1 to generate coincidence results. For convenience we present
one simple result to illustrate the strategy.

Theorem 1.2. Let X and Y be subsets of a Hausdorff topological vector space E with X convex and Y paracompact.
Suppose F € Ad(X,Y) is a compact map and G € DTK(Y, X). In addition suppose Y € ES(compact) (respectively,
X € ES(compact)). Then there exists ay € Y with G(y) NF1(y) # 0 (respectively, there exists a x € X with
G (x)NF(x) #0).

Proof. Since Y is paracompact, then from [1, 7] there exists a selection g € C(Y, X) (note 6 € C(Y,X) if
0 : Y — Xis a continuous (single valued) map) of G. Now Fg € Ad(Y,Y) (respectively, gF € Ad(X, X)) is
a compact map. Now Theorem 1.1 guarantees that there exists a y € Y with y € Fg(y) (respectively, there
exists a x € X with x € gF(x)). O

Remark 1.3. In Theorem 1.2 one could replace F is a compact map with G is a compact map.

2. Continuation theory
Let E be a completely regular topological space and U an open subset of E.
Definition 2.1. We say @ € B(E, E) if ® € Ad(E, E) and @ is a compact map.

Remark 2.2. An example of a map ® € Ad(E,E) is if ® : E — K(E); here K(E) denotes the family of
nonempty, compact, acyclic subsets of E. In this paper we consider ® € B(E, E) but we note if we wish
one could consider ® € B(E, U) throughout the paper; here U denotes the closure of U in E.

Deﬁnition 23. Wesay F € . A(U,E) if F: U — 2F and there exists a continuous (single valued) selection
f:U— E (we write f € C(U,E)) of F.

Remark 2.4.

(i). Suppose E is a topological vector space and U is paracompact. An example of a map F € A(U, E) is
F € DKT(U, E). As an aside, note metrizable spaces are paracompact and closed subsets of paracompact
spaces are paracompact.
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(ii). In this paper we always assume ® € B(E,E) is a compact map and F € A(U,E) if there exists
a continuous selection of F. However it is easy to adjust the thory if we assume ® € B(E,E) means
® € Ad(U,E) and F € A(U, E) means there exists a continuous compact selection of F.

In this paper we fix a ® € B(E, E).

Definition 2.5. We say F € Ay (U, E) (respectively, f € Coy (U, E))if F € A(U, E) (respectively, f € C(U, E))
with F(x) N ®~1(x) =0 (respectively, x ¢ ®(f(x))) for x € oU; here oU denotes the boundary of U in E
and ®'(x) ={z € E:x € O(z)})

Definition 2.6. Let f, g € Cou(U,E). We say f = g in Cau(U, E) if there exists a continuous map h :
U x [0,1] — E with x ¢ ®(h¢(x)) for x € 0U and t € (0,1) (here h¢(x) = h(x,t)), ho =fand h; = g.

Remark 2.7. Note = in Cay (U, E) is an equivalence relation.

Definition 2.8. Let F,G € Apu(U,E). We say F = G in Apu(U, E) if for any selection f € Cay (U, E)
(respectively, g € Cou (U, E)) of F (respectively, G) we have f = g in Cay (U, E).

Definition 2.9. We say F ¢ Aau (U, E) is essential in Ay (U, E) if for any selection f € Cay (U, E) of F and
any map j € Cau (U, E) with jlou = flou there exists a x € U with x € ©(j(x)).

Remark 2.10. If F € Apu (U, E) is essential in Apu (U, E) and if f € Cayu (U, E) is any selection of F, then
there exists a x € U with x € ®(f(x)) (take j = f in Definition 2.9) and so F(x) N ®~1(x) # 0.

Theorem 2.11. Let E be a completely regular topological space, U an open subset of E, F € Apu(U,E) and
G € Apu(U, E) is essential in Apu (U, E). Also suppose

{ for any selection f € Cay (U, E) (respectively, g € Cou(U, E)) 2.1)

of F (respectively, of G) and any map j € Cau (U, E) with jlou = flou we have g =j in Cou (U, E).

Then F is essential in Ay (U, E).

Proof. Let f € Cau(U, E) be any selection of F and consider any map j € Cou(U, E) with jlau = flou. We
must show there exists an x € U with x € ®(j(x)). Let g € Cou (U, E) be any selection of G. Now (2.1)
guarantees that there is a continuous map h : U x [0,1] — E with x ¢ ®(h¢(x)) for x € dU and t € (0,1),
hp =g and h; =j. Let

K={xeU:xe ®(he(x)) forsomete[0,1]} and D= {(x,t) e Ux[0,1]:x€ D(he(x))}.

Note D # () (take t = 0 and note G € Apu (U, E) is essential in Ay (U, E)) and D is closed (note @ is upper
semi-continuous and h is continuous) and so compact (note @ is a compact map). Let t: U x [0,1] — U
be a projection. Now K = m(D) is closed (see Kuratowski’s theorem [2]) and so in fact compact (recall
projections are continuous). Also note KNoU = @ (since x ¢ ®@(h¢(x)) for x € oU and t € (0,1)) so
since E is Tychonoff there exists a continuous map p : U — [0,1] with p(dU) = 0 and pu(K) = 1. Let
r(x) = h(x, 1(x)) = hy(x)(x) for x € U. Note r € Cou(U, E) with rlau = holou = glou. Now since G is
essential in Ay (U, E) there exists a x € U with x € ®(r(x)), i.e., x € O(hy(x)(x)). Thus x € K'so u(x) =1
and x € ®(hy(x)) = @(j(x)), as required. O

Now we present the topological transversality theorem for Ay (U, E) maps. Let E be a topological
vector space (recall topological vector sapces are completely regular). Next note

if ¢, P € Cou (U, E) with ¢plou = Wlou, then ¢ =¥ in Cou (U, E); (2.2)

to see this let h(x,t) = (1 —t)d(x) + tP(x) and note x ¢ O (h¢(x)) forx € OU and t € (0,1) (since if x € oU
and t € (0,1), then since ¢lay = Wlou we have @ (hi(x)) = O((1 —t)P(x) + tP(x)) = O(P(x))).
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Theorem 2.12. Let E be a topological vector space and U an open subset of E. Suppose F and G are two maps
in Apu(W,E) with F = G in Apu(U,E). Now F is essential in Ayu (U, E) if and only if G is ®-essential in
Aau (U, E). (In Theorem 2.12 if E a topological vector space is replaced by E a completely regular topological space,
then the result in Theorem 2.12 again holds provided we assume (2.2).)

Proof. Assume G is essential in Apy (U, E). We will apply Theorem 2.11 here. Let f € Cay (U, E) be any
selection of F and let g € Coy (U, E) be any selection of G and consider any map j € Cpy(U, E) with
jlou = flou. Now since F = G in Aay (U, E) we have f = g in Cay (U, E). Also from (2.2) (here ¢ = j and
P = f) we have j = f in Cay (U, E). Combining gives g = j in Coy (U, E), i.e., (2.1). Thus Theorem 2.11
guarantees that F is essential in Asu (U, E). A similar argument shows if F is essential in Ay (U, E), then
G is essential in Agy (U, E). O

Next we present an example of an essential in Ay (U, E) map which will enable us to present a
Leray-Schauder type alternative.

Theorem 2.13. Let E be a locally convex metrizable topological vector space, U an open subset of E and ®(0) C UL
Then the zero map is essential in Agu (U, E).

Proof. Consider any selection g € Cpy (U, E) of the zero map (note g = 0). Now consider any map
j € Cou (U, E) with jlau = 0lgu. We must show there exists a x € U with x € ®(j(x)). Let

_[ilx), xel,
‘b(")_{o, x € E\WL.

Now ¢ € C(E,E) (amap 0 € C(E,E) if 6 : E — E is a continuous map) so @ is an admissible compact
map. Then Theorem 1.1 (note from Dugundji extension theorem every locally convex metrizable topo-
logical vector space is an AR) guarantees that there exists a x € E with x € O(P(x)). If x € E\U, then
x € @(0), a contradiction since ®(0) C U. Thus x € U so x € O(j(x)). dJ

Theorem 2.14. Let E be a locally convex metrizable topological vector space, U an open subset of E, F € Apu (U, E),
®(0) C Uand tF(x) N @ Y(x) = 0 for x € U and t € (0,1). Then F is essential in Ayu (U, E) (so in particular
there exists a x € U with F(x) N ®1(x) # 0).

Proof. From Theorem 2.13 we know that the zero map is essential in Aay (U, E). We will apply Theorem
2.11 to show F is essential in Ay (U, E). Note that topological vector spaces are completely regular so we
need only to show (2.1) with G = 0 (so automatically g =0). Let f € C ou(U,E) be any selection of F and
consider any map j € Cou (U, E) with jlau = flou- Now let h(x,t) = tj(x) and note j = 0 in Cay (U, E)
(note if x € U and t € (0,1), then x ¢ ®(h(x)) since jlou = flou gives @(h¢(x)) = D(tj(x)) = O(tf(x))).
Thus (2.1) holds. O

Remark 2.15. Theorem 2.14 gives a strong conclusion, namely F is essential in Asu(U,E). The usual
conclusion in a Leray-Schauder type alternative is that there exists a x € U with F(x) N ®~1(x) # (. We
note that this can be proved directly without any reference to essential maps. Let f € C(U, E) be any
selection of F and let

K={x € U:x € O(tf(x)) for some t € [0,1]}.

Note K # ) (take t = 0 and note ®(0) C U) is compact and K NdU = () (since tF(x) N ®1(x) = § for
x € 0U and t € (0,1)) so there exists a continuous map p : U — [0,1] with p(dU) = 0 and p(K) = 1. Let
0:E — E be given by
_ [ uf(x), xel,
O(x) = { 0, x € E\U.

Now 6 € C(E,E) so @0 is an admissible compact map. Then Theorem 1.1 guarantees that there exists
ax € Ewithx € ®(0(x)). If x € E\U, then x € ®(0), a contradiction since ®(0) € U. Thus x € U so
x € ®(u(x)f(x)) and as a result x € K. Thus p(x) =1 and so x € @ (f(x)) so F(x) N d~1(x) # 0.
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A special case of Remark 2.15 (i.e., when A = C) is the following.

Theorem 2.16. Let E be a locally convex metrizable topological vector space, U an open subset of E, f € Cou (U, E),
®(0) C Uand x ¢ O(tf(x)) for x € QU and t € (0,1). Then there exists a x € U with x € O(f(x)).

Remark 2.17. There is an obvious analogue of Theorem 2.14, when A = C also.

Now we prove a Furi-Pera type result. Here E will be a locally convex metrizable topological vector
space and Q a closed convex subset of E. In our next result we assume 0Q = Q (the case when int(Q) # 0
is also easily handled; see Remark 2.19).

Theorem 2.18. Let E be a locally convex metrizable topological vector space, Q a closed convex subset of E, 0Q = Q,
Fe A(Q,E)and ® € B(E, E) with ®(0) C Q. In addition assume

{ if {(X)’,Aj)};}il is a sequence in 9Q x [0, 1] converging (2.3)

to (x,A) with AF(x) N @1 (x) #Qand 0 < A < 1, then {O(A;F(x;))} € Q for j sufficiently large.
Then there exists a x € Q with F(x) N ®~1(x) # 0.

Proof. From Dugundji’s theorem we know there exists a retraction r : E — Q. Let f € C(Q,E) be a
selection of F and let
Q={xek:xe d(f(r(x))}

Note Q # ) from Theorem 1.1 (note ®fr is a compact admissibe map) and Q is compact. We claim
QN Q # 0. To show this we argue by contradiction. Suppose Q N Q = . Then since Q is compact and Q
is closed, there exists a & > 0 with dist(Q, Q) > §. Choose m € {1,2,...} with 1 < dm and let

u; = {er:d(x,Q) < 1} forie{mm+1,...,}

here d is the metric associated with E. Fix i € {m, m+1,...}. Since dist(Q, Q) > & we see that Q N U; = (.
Now Theorem 2.16 (note fr € C(E,E) and ®(0) € Q C U;) guarantees that there exists A; € (0,1) and
yi € 0U; with y; € O(A;fr(yi)). Since y; € 0U; we have {®(Aifr(yi))} € Q fori e {m,m+1,...} and so

{OAFriyy))} € Qforie{mm+1,...} (2.4)

Let
D ={x € E:x € O(Afr(x)) for some A € [0, 1]}.

Now D # () (see Theorem 1.1 and take A = 1) and D is compact. This together with
1 . .
d(y;, Q) = ; and fj;| < 1forje{mm+1,...}

implies that we may assume without loss of generality that A; — A* € [0,1] and y; — y* € 9Q. In addition
since f and r are continuous, ® is upper semi-continuous and y; € @ (A;fr(y;)) we have y* € ©(A*fr(y*)).
Thus since r(y*) = y* we have y* € ®(A*fy*). If \* =1, then y* € O(fy*)(= @ (fr(y*)), which contradicts
QNQ =0. Thus 0 < A* < 1. Now (2.3) with x; = r(y;) (note y; € dU; and r(y;) € 0Q) and x = y* = r(y*)
and y* € ®(A*f(y*)) (so M*F(y*) N @~ L(y*) # ) implies

{®(AjFx;)} C Q for j sufficiently large.

This contradicts (2.4). Thus Q N Q # () so there exists a x € Q with x € O(fr(x)) = O(f(x)), so F(x) N
O 1(x) #0. O
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Remark 2.19. In Theorem 2.18 we assumed 0Q = Q. However this is easily removed since if int(Q) # 0
(assume without loss of generality that 0 € int(Q)), then one can take the retraction r: E — Q as

X

S E
max(L, p(x)} O

T(x)

where p is the Minkowski functional on Q (i.e., nu(x) = inf{fac > 0 : x € xQ}). Note r(z) € 9Q if z € E\Q.
The argument in Theorem 2.18 now remains the same (once one notes that r(y;) in the proof is in 9Q).

A special case of Theorem 2.18 and Remark 2.19 (i.e., when A = C) is the following.

Theorem 2.20. Let E be a locally convex metrizable topological vector space, Q a closed convex subset of E,
fe C(Q,E) and ® € B(E,E) with ®(0) C Q. In addition assume

if {(x]—,)\j)}‘j’il is a sequence in 9Q x [0, 1] converging
to (x, ) with x € @(Af(x)) and 0 < A < 1, then {O(A;f(x5))} € Q for j sufficiently large.

Then there exists a x € Q with x € O(f(x)).
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