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Abstract
This paper focuses on the existence of mild solutions in Banach space for a first order semi-linear integro-differential equation.

The results are achieved with the fixed-point theorem and Kuratowski measure of noncompactness. We conclude this study with
an example to illustrate our findings.
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1. Introduction

Integro-differential equations appear in many fields of sciences such as physics, biology and other
fields of applied mathematics. In the last years, this kind of equations have received considerable attention,
see for example [2, 4, 13, 15, 16] and references therein.

Many researchers used the measure of noncompactness to study the existence of mild solution for
various forms of integral equations, differential equations, and integro-differential equations. For more
details on this subject we refer the reader to Mouffak et al. [6], Rodkhina and Sadovskii [1], Alvarez [7],
Benchohra and Rezoug [5], and references therein.

Motivated by all these papers, we derive sufficient conditions for the existence of solution of the
following class of integro-differential equationdL(t) =

[
OL(t) +

∫t
0
Γ(t− s)L(s)ds+ g(t,L(t),

∫t
0
h(t, s,L(s))ds)

]
dt, t ∈ I = [0, T ],

L(0) = l0,
(1.1)

where (X, | · |) is a real Banach space, O is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators (S(t))t>0 on X and Γ(t) is a linear closed operator on Xwith domainD(O) ⊂ D(Γ).
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The function h : I× I× X → X, with s 6 t for (s, t) ∈ I× I is continuous in X, g : I× X× X → X is a
Caratheodory function.

In our current paper, we will investigate the existence of solutions for the previously mentioned integro-
differential system since this problem still has not been considered in the literature. Our contributions are:
a general class of integro-differential equation is considered in this work. Then, using functional analysis
methods, a set of sufficient conditions is proposed to ensure the existence of mild solutions. The results are
established through the use of the theory of the resolvent operator in the Grimmer sense. We use the fact
that the operator-norm continuity of the resolvent operator is equivalent to that of the semigroup. This
property allows us to drop the supposition that the operator semigroup is compact. This is an interesting
result in itself and is of key practical importance. In fact in some applications, it is not easy to show the
resolvent family associated to (2.1) is immediately norm continuous. Our paper expands the usefulness of
integro-differential equations as literature shows only results of such equations in semigroup.

The paper is exhibited as follows. In Section 2, we remember some concepts and facts regarding
Kuratowski measure of noncompatness and the theory of resolvent operator. Section 3 provides our main
results. We will present an illustration in Section 4 to explain our key findings.

2. Preliminaries

Throughout this paper (X, | · |) is a Banach space and C(I,X) denote the Banach space of continuous
functions from I into X furnished by the usual supremum norm

‖L‖ = sup
t∈I

|L(t)|, ∀L ∈ C(I,X).

Next to be able to reach existence of mild solutions for (1.1), we recall some details on partial integro-
differential equations and resolvent operators that will be used to establish the key results.

We look at the following Cauchy problemx ′(t) = Ox(t) +

∫t
0
Γ(t− s)x(s)ds for t > 0,

x(0) = x0 ∈ X,
(2.1)

where X is a Banach space, O and Γ(t) are closed linear operators on X with domains D(O) ⊂ D(Γ). Y
represents the Banach space D(O) furnished with the graph norm defined by |y|Y := |Oy|+ |y| for y ∈ Y.
We denote by C([0,+∞); Y), and B(Y,X), the space of all continuous functions from [0,+∞) into Y, the set
of all bounded linear operators from Y into X, respectively. If X = Y, we write B(X) instead of B(X,X).

Definition 2.1 ([12]). We call resolvent operator for the system (2.1), a bounded linear operator valued
function R(t) ∈ B(X) for t > 0, having the following properties:

a) R(0) = I (identity operator on X) and ‖R(t)‖ 6Meβt for some constants M and β;
b) for each x ∈ X, R(t)x is strongly continuous for t > 0;
c) R(t) ∈ B(Y) for t > 0, for x ∈ Y, R(·)x ∈ C1([0,+∞),X)∩C([0,+∞), Y) and

R ′(t)x = OR(t)x+

∫t
0
Γ(t− s)R(s)xds = R(t)Ox+

∫t
0
R(t− s)Γ(s)xds for t > 0.

Example 2.1. Let X = R, Oy = 2y and Γ(t)y = −2y in equation (2.1). Then in that case, we have

R(t)x0 = et(cos t+ sin t)x0 and T(t)x0 = e2tx0.

Remark 2.2. The above example shows that in general, the resolvent operator R(t)t>0 for equation (2.1)
does not satisfy the semigroup law, namely,

R(t+ s) 6= R(t)R(s) for some t, s > 0.
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The existence of resolvent operator has been discussed in [12]. In what follows, we suppose the following
assumptions.

(H1) O is the infinitesimal generator of strongly continuous semigroup (S(t))t>0 on X.
(H2) For all t > 0, Γ(t) is closed operator from D(O) to X and Γ(t) ∈ B(Y,X). For any y ∈ Y, the

map t 7−→ Γ(t)y is bounded, differentiable and the derivative t 7−→ Γ ′(t)y is bounded uniformly
continuous on R+.

Theorem 2.3 ([12]). Assume that (H1)-(H2) hold . Then there exists a unique resolvent operator of the Cauchy
problem (2.1).

We have the following theorem that establishes the equivalence between the operator-norm continuity
of the C0-semigroup and the resolvent operator for integral equations.

Theorem 2.4 ([11, Theorem 6]). Let O be the infinitesimal generator of a C0-semigroup (T(t))t>0 and let (Γ(t))t>0
satisfies (H2) . Then the resolvent operator (R(t))t>0 for equation(2.1) is operator-norm continuous (or continuous
in the uniform operator topology) for t > 0 if and only if (T(t))t>0 is operator-norm continuous for t > 0.

Next we introduce the Kuratowski measure of noncompactness.

Definition 2.5. Let B be a bounded subset of a Banach space X. The Kuratowski measure of noncompactness
ν is defined by

ν(B) = inf{ε > 0 : B has a finite cover by sets of diameter smaller than ε}.

The Kuratowski measure of noncompactness satisfies the properties described by the following lemmas.

Lemma 2.6 ([3]). Let X be a Banach space and B,C ⊂ X be bounded, then the following properties are satisfied:

1. ν(B) = 0 if only if B is relatively compact;
2. ν(B) = ν(B); B the closure of B;
3. ν(C) < ν(B), when C ⊂ B;
4. ν(C+B) < ν(C) + ν(B), where C+B = {d | d = b+ c; b ∈ B, c ∈ C};
5. ν(rB) = |r|ν(B) for all r ∈ R;
6. ν(Conv(B)) = ν(B), where Conv(B) is the convex hull of B;
7. ν(C∪B) = max(ν(C),ν(B));
8. ν(C∪ {x}) = ν(C) for all x ∈ X.

Denote by ηT (y, ε) the modulus of continuity of y on the interval [0, T ], i.e.,

ηT (L, ε) = sup{|L(t) − L(s)|; t, s ∈ I, |t− s| 6 ε}.

Further we define
ηT (B, ε) = sup{ηT (L, ε), L ∈ B}, ηT0 = lim

ε→0
ηT (B, ε).

Lemma 2.7 ([8]). Let X be a Banach space, B be a bounded subset of X. Then there is a countable and bounded set
B0 ⊂ B such that

ν(B) 6 2ν(B0).

Lemma 2.8 ([14]). Let X be a Banach space, B = {ln}
∞
n=0 ⊂ C(I,X) be a bounded and countable set. Then ν(B(t))

is Lebesgue integrable on I, and

ν

({∫t
0
ln(s)ds

}∞
n=0

)
6 2
∫t

0
ν(B(s))ds, t ∈ I.
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Lemma 2.9 ([18]). Let w(t), u(t) and v(t) be real valued nonnegative continuous function defined on R+, for
which the inequality

w(t) 6 w0 +

∫t
0
u(s)

[
w(s) +

∫s
0
v(ξ)w(ξ)dξ

]
ds,

is satisfied for all t ∈ R+, where w0 is a nonegative constant, then

w(t) 6 w0

[
1 +

∫t
0
u(s)

[
exp

(∫s
0
(u(ξ) + v(ξ))dξ

)]
ds

]
,

for all t ∈ R+.

Definition 2.10 ([6]). Let E be a Banach space. A continuous map G : Ω ⊂ E→ E is called condensing with
respect to a measure of noncompactness ν (or ν - condensing) if for every bounded not relatively compact
set B ⊂ Ω, we have

ν(G(B)) < ν(B).

Theorem 2.11 ([9]). Let E be a Banach space, Ω be a bounded open subset of E and 0 ∈ Ω. Suppose that F : Ω→ E

is ν-condensing and assume that u 6= λF(u) for u ∈ ∂Ω and λ ∈ (0, 1) hold. Then F has a fixed point in Ω.

3. Main result

Definition 3.1. We call mild solution of the system (1.1), a function L ∈ C(I,X) for which the following
integral equation is satisfied

L(t) = R(t)L0 +

∫t
0
R(t− s)g

(
s,L(s),

∫s
0
h(s, ξ,L(ξ))dξ

)
ds.

In order to prove our results, we introduce the following assumptions.

(H3) There is a continuous function u : I→ R+, such that

|g(t, x,y)| 6 u(t)(|x|+ |y|) for all x,y ∈ X and a.e. t ∈ I.

(H4) There are integrable functions ρi(i = 1, 2) : I→ R+, such that:

ν(g(t,O1,O2)) 6 ρ1(t)ν(O1) + ρ2(t2)ν(O2),

for a.e. t ∈ I and O1,O2 ⊂ X.
(H5) There is a continuous function v : I→ R+, such that:

|h(t, s, x)| 6 v(t)|x|,

for a.e. (t, s) ∈ {(t, s) ∈ I× I; s 6 t} and x ∈ X.
(H6) There is a constant h∗ > 0, such that:

ν(h(t, s,D)) 6 h∗ν(D),

for a.e. (t, s) ∈ J = {(t, s) ∈ I× I; s 6 t} and D ∈ X.

Theorem 3.2. Assume that equation (2.1) has a resolvent operator(R(t))t>0 which is continuous in the operator-
norm topology for t > 0 and hypotheses (H1)-(H6) hold. Then there exists at least one mild solution of (1.1).
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Proof. Let Q : C(J,X)→ C(J,X), be a operator defined by

(QL)(t) = R(t)L0 +

∫t
0
R(t− s)g

(
s,L(s),

∫s
0
h(s, ξ,L(ξ))dξ

)
ds.

A mild solution of the system (1.1) is a fixed point of the operator Q. Let P be a positive constant. We
consider the set BP = {L ∈ C(J,X) : ‖L‖ < P}. The proof will be splited into the following steps.

Step 1. Q(BP) is bounded for any bounded set BP. For L ∈ BP, and t ∈ I, we have

|QL(t)| 6 ‖R(t)‖|L0|+

∫t
0
‖R(t− s)‖

∣∣∣∣g(s,L(s), ∫s
0
h(s, ξ,L(ξ))dξ

)∣∣∣∣ds
6 N|L0|+N

∫t
0
u(s)

(
|L(s)|+

∫s
0
v(s)|L(ξ)|dξ

)
ds 6 N|L0|+NPT‖u‖

(
1 +

T

2
‖v‖
)
<∞.

Thus Q(BP) is bounded for all L ∈ BP.

Step 2. Q is continuous. To see this, let (ln)n∈N be a convergent sequence in BP such that ln → l. Then
we have, for all t ∈ I

|(Qln)(t) − (Ql)(t)| 6 N
∫t

0

∣∣∣∣g(s, ln(s), ∫s
0
h(s, ξ, ln(ξ))dξ

)
− g

(
s, l(s),

∫t
0
h(s, ξ, l(ξ))dξ

)∣∣∣∣ds.
Since h is continuous and g is a Caratheodory function, using the Lebesgue dominated convergence
theorem, we obtain

‖Qln −Ql‖ → 0 as n→ +∞,

which implies that Q is a continuous operator on BP.

Step 3. Q(Bp) is equicontinuous. Let t1, t2 ∈ I with t1 < t2 and L ∈ BP. We have:

|(QL)(t2) − (QL)(t1)| 6

∣∣∣∣∫t1

0
(R(t2 − s) − R(t1 − s))g

(
s,L(s),

∫s
0
h(s, ξ,L(ξ))dξ

)
ds

∣∣∣∣
+

∣∣∣∣∫t2

t1

R(t2 − s)g

(
s,L(s),

∫s
0
h(s, ξ,L(ξ))dξ

)
ds

∣∣∣∣
6
∫t1

0
‖R(t2 − s) − R(t1 − s)‖B(X)u(s)

(
|L(s)|+

∫s
0
v(ξ)|L(ξ)|dξ

)
ds

+N

∫t2

t1

u(s)

(
|L(s)|+

∫s
0
v(ξ)|L(ξ)|dξ

)
ds.

We obtain

|(QL)(t2) − (QL)(t1)| 6 P
∫t1

0
‖R(t2 − s) − R(t1 − s)‖B(X)u(s)

(
1 +

∫s
0
v(ξ)dξ

)
ds

+NP

∫t2

t1

sup
t∈I

|u(t)|

(
1 +

∫s
0

sup
t∈I

|v(t)|dξ

)
ds

6 P
∫t1

0
‖R(t2 − s) − R(t1 − s)‖B(X)u(s)

(
1 +

∫s
0
v(ξ)dξ

)
ds+NP‖u‖

∫t2

t1

(1 + s‖v‖)ds

6 P
∫t1

0
‖R(t2 − s) − R(t1 − s)‖B(X)u(s)

(
1 +

∫s
0
v(ξ)dξ

)
ds

+NP‖u‖
(
(t2 − t1) +

1
2
‖v‖(t2 − t1)

2
)

.

By Theorem 2.4, the right-hand side of the above inequality tends to zero as t2 − t1 → 0. Consequently
Q(BP) is equicontinuous.
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Setp 4. We show that Q is condensing operator. Let ν∗(D) be the measure of noncompactness defined on
the family of bounded subsets of the space C(I,X) by

ν∗(D) = ηT0 (D) + sup
t∈I

e−ξρ(t)ν̄(D(t)),

where

ρ(t) = 4N
∫t

0
(ρ1(s) + 2h∗sρ2(s))ds, ξ > 1, ν̄(D(t)) = sup

s∈[0,t]
ν(D(s)).

For all D ⊂ BP, Q(D) is bounded. Therefore, a countable set D0 = {ln}
∞
n=1 ⊂ D exists by Lemma 2.7 so

that
ν(Q(D)(t)) 6 2ν(Q(D0)(t)) for each t ∈ I. (3.1)

By the properties of ν, hypotheses (H3), (H4), (H5), and Lemmas 2.7 and 2.8, we obtain

ν(Q(D0)(t)) 6 ν

({∫t
0
R(t− s)g(s, ln(s),

∫s
0
h(s, ξ, ln(ξ))dξ)ds

}∞
n=0

)
6 2N

∫t
0

{
ν

(
g(s, ln(s),

∫s
0
h(s, ξ, ln(ξ))dξ)

)}∞
n=0

ds

6 2N
∫t

0

(
ρ1(s){ν(ln(s))}

∞
n=0ds+ ρ2(s)

{
ν

(∫t
0
h(s, ξ, ln(ξ))dξ

)}∞
n=0

)
ds

6 2N
∫t

0

(
ρ1(s){ν(ln(s))}

∞
n=0 + 2h∗ρ2(s)

{∫s
0
ν(ln(ξ))dξ

}∞
n=0

)
ds

6 2N
∫t

0

(
ρ1(s)ν(D0(s)) + 2h∗ρ2

∫s
0
ν(D0(ξ))dξ

)
ds

6 2N
∫t

0

(
ρ1(s)ν(D0(s)) + 2h∗ρ2(s)s sup

ξ∈[0,s]
ν(D0(ξ))

)
ds

6 2N
∫t

0

(
ρ1(s) sup

s∈[0,t]
ν(D0(s)) + 2h∗ρ2(s)s sup

ξ∈[0,t]
ν(D0(ξ))

)
ds

6 2N
∫t

0
(ρ1(s) + 2h∗sρ2(s)) sup

s∈[0,t]
ν(D0(s))ds.

From inequality (3.1), it follows that

ν(QD(t)) 6 4N
∫t

0
(ρ1(s) + 2h∗ρ2(s)s)ν̄(D(s))ds.

Therefore, we know

ν(QD(t)) 6 4N
∫t

0
(ρ1(s) + 2h∗sρ2(s))e

ξρ(s)e−ξρ(s)ν̄(D(s))ds,

then

e−ξρ(t)ν(QD(t)) 6
1
ξ

sup
t∈I

e−ξρ(t)ν̄(D(t)), hence e−ξρ(t) sup
t∈I

ν(QD(t)) 6
1
ξ

sup
t∈I

e−ξρ(t)ν̄(D(t)).

Since e−ξρ(t) sups∈[0,t] ν(QD(s)) 6 e−ξρ(t) supt∈I ν(QD(t)), we obtain

e−ξρ(t) sup
s∈[0,t]

ν(QD(s)) 6
1
ξ

sup
t∈I

e−ξρ(t)ν̄(D(t)).
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Then
e−ξρ(t)ν̄(QD(t)) 6

1
ξ

sup
t∈I

e−ξρ(t)ν̄(D(t)). (3.2)

From Step 3 and inequality (3.2), we obtain

ν∗(QD) 6 ν∗(D).

Consequently, Q is condensing.

Step 5. We show that there is an open set O ⊆ C(I,X) with L 6= βQ(L), for β ∈ (0, 1) and L ∈ ∂O. Let
L ∈ C(I,X), suppose that L = βQ(L) for β ∈ (0, 1). Then

L(t) = βR(t)L0 +β

∫t
0
R(t− s)g

(
s,L(ξ),

∫s
0
h(s, ξ,L(ξ))dξ

)
ds.

By (H1)-(H3) and (H5), for each t ∈ I, we have

|L(t)| 6 ‖R(t)‖B(X)|L0|+

∫t
0
‖R(t− s)‖B(X)u(s)

(
|L(s)|+

∫s
0
v(ξ)|L(ξ)|dξ

)
ds

6 N|L0|+N

∫t
0
u(s)

(
|L(s)|+

∫s
0
v(ξ)|L(ξ)|dξ

)
ds.

By Lemma 2.9, we get

|L(t)| 6 N|L0|

(
1 +

∫t
0
Nu(s)exp

(∫s
0
(Nu(ξ) + v(ξ))dξ

)
ds

)
6 N|L0|

(
1 +N

∫t
0

sup
t∈I

|u(t)|exp

(∫s
0
(N sup

t∈I
|u(t)|+ sup

t∈I
|v(t)|)dξ

))
6 N|L0|(1 + TN‖u‖exp(T(N‖u‖+ ‖v‖))) = τ.

Thus, we get ‖L‖ 6 τ. We consider the set

O = {L ∈ C(I,X) : ‖L‖ < τ+ 1}.

By the choice of O, there is no L ∈ ∂O thus L = βQ(L), for β ∈ (0, 1). Thus by Theorem 2.11, we conclude
that Q has a fixed point that is a solution of the system (1.1).

4. Example

In order to illustrate the previous theoretical results, we consider the following semilinear integro-
differential equation

∂

∂t
x(t, ξ) = [

∂2x(t, ξ)
∂ξ2 + b̃

∂x(t, ξ)
∂ξ

+ c̃x(t, ξ)] +
∫t

0
Ξ(t− s)[

∂2x(s, ξ)
∂ξ2 + b̃

∂x(s, ξ)
∂ξ

+ c̃x(s, ξ)]ds

+
x(t, ξ)

(
√
t+ 1)(1 + |x(t, ξ)|)

+
e−t

(
√
t+ 1)(t+ 1)

∫s
0

√
tx(s, ξ)

(1 + s2 + t)(1 + x2(s, ξ))
ds, t ∈ [0, T ], ξ ∈ [0, 1], (4.1)

x(t, 0) = x(t, 1) = 0, for t ∈ [0, T ],
x(0, ξ) = x0, t ∈ [0, T ], ξ ∈ [0, 1],
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where Ξ : R+ 7→ R is continuous function, b̃, c̃ ∈ R.
Let X = L2(0, 1). We define the operator O induced on X as follows:{

D(O) = H2(0, 1)∩H1
0(0, 1),

Oz = z” + b̃z
′
+ c̃z, b̃, c̃ ∈ R.

From [10, p. 173], we know that O is the infinitesimal generator of an analytic C0 semigroup (S(t))t>0 on
X. Since the semigroup generated by O is analytic, then it is norm continuous for t > 0.

We define the operators Γ(t) : Y 7→ X as follows:

Γ(t)N = Ξ(t)ON for t > 0 and N ∈ D(O).

Furthermore, for every t ∈ [0, T ], we define

L(t) = x(t, ξ),

g(t,y, z)(ξ) =
1

(
√
t+ 1)(1 + |y(t, ξ)|)

y(t, ξ) +
e−t

(
√
t+ 1)(t+ 1)

z(t, ξ),

h(t, s,y)(ξ) =
√
ty(t, ξ)

(1 + s2 + t)(1 + y2(t, ξ))
.

Thus, (4.1) takes the following abstract formdL(t) =
[
OL(t) +

∫t
0
Γ(t− s)L(s)ds+ g(t,L(t),

∫t
0
h(t, s,L(s))ds

]
dt, t ∈ I = [0, T ],

L(0) = l0.
(4.2)

We suppose Ξ is a bounded and C1 function such that Ξ
′
is bounded and uniformly continuous which

implies that the operator Γ(t) satisfies (H2). Thus from Theorems 2.3 and 2.4, problem (4.2) has a resolvent
operator (R(t))t>0 on X which is norm continuous for t > 0.

We have
|g(t,y, z)| 6

1
1 +
√
t
(|y(t, ξ)|+ |z(t, ξ)|),

and

|h(t, s,y)| 6
√
t

1 + t
|y(t, ξ)|. (4.3)

Hence conditions (H3) and (H5) are satisfied with

u(t) =
1

1 +
√
t

, v(t) =
√
t

1 + t
.

From the definition of g, for every t ∈ I, and B1,B2 ∈ B ⊂ X, we have

ν(g(t,B1,B2)) 6
1√
t+ 1

ν(B1) +
e−t

(1 +
√
t)(1 + t)

ν(B2).

Hence condition (H4) is satisfied with

ρ1(t) =
1√
t+ 1

and ρ2 =
e−t

(1 +
√
t)(1 + t)

.

By (4.3), for every t ∈ I and B ⊂ X, we have ν(h(t, s,B)) 6 supt∈I
√
t

t+1ν(B), then

ν(h(t, s,B)) 6
√

2
3
ν(B).

Hence (H6) is satisfied with h∗ =
√

3
2 . Finally, all assumptions of our main results are satisfied. From

Theorem 3.2, we deduce the existence of solution of system (4.1).
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5. Conclusion

This paper has studied a new class of partial integro-differential equations. The results are achieved
with fixed-point theorem and Kuratowski measure of noncompactness. Finally, an example is given to
illustrate the effectiveness of the results obtained. There is one direct issue which require further study.
We will investigate the partial functional integro-differential with state-dependent nonlocal conditions by
using a generalization of the classical Darbo fixed point theorem for Fréchet spaces associated with the
concept of measures of noncompactness.
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[2] K. Balachandran, D. G. Park, S. M. Anthoni, Existence of solutions of abstract nonlinear second-order neutral functional
integrodifferential equations, Comput. Math. Appl., 46 (2003), 1313–1324. 1

[3] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, (1980). 2.6
[4] A. Belleni-Morante, An Integrodifferential equation arising from the theory of heat conduction in rigid material with memory,

Boll. Un. Mat. Ital., 15 (1978), 470–482. 1
[5] M. Benchohra, N. Rezzoug, Measure of noncompactness and second order evolution equations, Gulf J. Math., 4 (2016),

71–79. 1
[6] M. Benchohra, N. Rezoug, Y. Zhou, Semilinear Mixed Type Integro-Differential Evolution Equations Via Kuratowski

Measure of Noncompactness, Z. Anal. Anwend., 38 (2019), 143–156. 1, 2.10
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