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Abstract
In this paper, a Halpern type iterative scheme for finding a common element in the set of fixed points of generic 2-

generalized Bregman nonspreading mappings and the solution set of equilibrium problem have been proposed. We also prove
that the sequence generated by the scheme converges strongly to the element in a real reflexive Banach space. Our results
improve and generalize some announced results in the literature.
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1. Introduction

Let C be a nonempty subset of a real Hilbert space H and T : C→ H be a nonlinear map. A point
x ∈ H is called a fixed point of T if Tx = x. Let the set of fixed points of T be denoted by F(T),
i.e., F(T) = {x ∈ C : Tx = x}. A mapping T : C→ H is called 2-generalized hybrid [22] if there exist
α1,α2,β1,β2 ∈ R such that

α1‖T 2x− Ty‖2 +α2‖Tx− Ty‖2 + (1 −α1 −α2)‖x− Ty‖2

6 β1‖T 2x− y‖2 +β2‖Tx− y‖2 + (1 −β1 −β2)‖x− y‖2, ∀ x,y ∈ C.

Let g : C×C→ R be a bifunction, the equilibrium problem with respect to g is to find a point x ∈ C such
that g(x,y) > 0 for all y ∈ C. Let the set of solutions of the equilibrium problem be denoted by EP(g).
Numerous problems can be reduced to finding solution of the equilibrium problem among which can be
found in physics, optimization and economics. To solve equilibrium problems, some of the methods have
been proposed; see, for example, Blum and Oettli [9] and Combettes and Hirstoaga [14].
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In 2016, Alizardeh and Moradlou [5] obtained weak convergence theorems for finding common ele-
ment of the set of solutions of an equilibrium problem and the set of fixed points of 2-generalized hybrid
mappings in Hilbert spaces.They proved that the sequence generated by

x1 = x ∈ E,
un ∈ E such that f(un,y) + 1

rn
〈y− un,un − xn〉 > 0, ∀y ∈ C,

yn = (1 −βn)xn +βnSxn,
xn+1 = (1 −αn)xn +αnSyn ∀n ∈N,

converges weakly to v = limn→∞ PF(S)∩EP(f)x1, where PF(S)∩EP(f)x1 is the metric projection of C on
F(S)∩ EP(f), E is a nonempty closed convex subset of a real Hilbert space H, S is a 2-generalized hy-
brid mapping and f is a bifunction from E× E to R. Takahashi [28] in 2018 proved weak and strong
convergence theorems for noncommutative 2-generalized hybrid mappings in Hilbert spaces.

Kondo and Takahahasi [19] introduced a mapping which contain 2-generalized hybrid mapping in
Hilbert spaces. A mapping T : C → C is called normally 2-generalized hybrid [19] if there exist
α1,α2,α3,β1,β2,β3 ∈ R such that

α1‖T 2x− Ty‖2 +α2‖Tx− Ty‖2 +α3‖x− Ty‖2

+β1‖T 2x− y‖2 +β2‖Tx− y‖2 +β3‖x− y‖2 6 0, ∀ x,y ∈ C,

where (a)
∑3
i=1(αi +βi) > 0 and (b)

∑3
i=1 αi > 0.

In 2018, Hojo, Kondo and Takahashi [17] proved weak and strong convergence theorems for commu-
tative normally 2-generalized hybrid mappings in Hilbert spaces. Recently, Takahashi et al. [29] proved
strong convergence theorem by hybrid method for two noncommutative normally 2-generalized hybrid
mappings in Hilbert spaces. They established that the sequence {xn} ⊂ C defined by

x1 = x ∈ C,
yn = anxn + bn(γnS+ (1 − γn)T)xn + cn(δnS

2 + (1 − δn)T
2)xn,

Cn = {z ∈ C : ‖yn − z‖ 6 ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 > 0},
xn+1 = PCn∩Qnx1, ∀n ∈N,

converges strongly to z0 = PF(S)∩F(T), where PF(S)∩F(T) is the metric projection of C on F(S)∩ F(T), C is
a nonempty closed convex subset of a real Hilbert space H, S and T are normally 2-generalized hybrid
mappings.

Let E be a real Banach space and f : E → (−∞,+∞] be a convex function. We denote by domf the
domain of f; that is domf = {x ∈ E : f(x) <∞}. For any x∈ int(dom(f)) and y∈ E, the derivative of f at x
in the direction y is defined by

f◦(x,y) := lim
t→0

f(x+ ty) − f(x)

t
. (1.1)

The function f is said to be Gâteaux differentiable at x if limt→0
f(x+ty)−f(x)

t exists for any y. In this
case, the gradient of f at x is the linear functional ∇f(x) : E → (−∞,+∞] defined by 〈∇f(x),y〉=f◦(x,y),
for any y ∈ E . The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable at
every x∈ int(dom(f)). The function f is said to be Fréchet differentiable at x if the limit in (1.1) is attained
uniformly in y, ‖y‖ = 1. Finally, f is said to be uniformly Fréchet differentiable on a subset C ⊂ int(dom(f))
if the limit (1.1) is attained uniformly for x∈ E and ‖y‖ = 1. It is well known that if a continuous convex
function f is Gâteaux differentiable (resp. Fréchet differentiable) in int(dom(f)), then ∇f is norm-to-weak∗

continuous (resp. continuous) in int(dom(f)) (see also [6]).
Let E be a real Banach space and f : E→ (−∞,+∞] a strictly convex and Gâteaux differentiable func-

tion. The function Df : domf× int(dom(f))→ [0,+∞), defined by

Df(x,y) := f(x) − f(y) − 〈∇f(y), x− y〉, (1.2)
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is called the Bregman distance with respect to f (see [13]).
Remark 1.1. If E is a smooth Banach space and f(x) = ‖x‖2 for all x ∈ E, then we have∇f(x) = 2Jx for all x ∈
E where J : E→ E∗ is the normalized duality mapping. Hence Df(x,y) = φ(x,y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,
for all x,y∈ E. Also if E is a Hilbert space, then Df(x,y) = ‖x− y‖2, ∀x,y∈ E.

Observe that from (1.2), we have for any x ∈ domf and y, z ∈ int(dom(f)).

Df(x, z) = Df(x,y) +Df(y, z) + 〈x− y,∇f(y) −∇f(z)〉,

which is called the three point identity. As an extension and generalization of the normally 2-generalized
hybrid mapping, Ali and Haruna [3] introduced a generic 2-generalized Bregman nonspreading map-
ping in a real reflexive Banach space. A mapping T : C→ C is called a generic 2-generalized Bregman
nonspreading mapping if there exist α1,α2,α3,β1,β2,β3,γ1,γ2, δ1, δ2 ∈ R such that

(i)
∑3
i=1(αi +βi) > 0;

(ii)
∑3
i=1 αi > 0;

(iii) for all x,y ∈ C,

α1Df(T
2x, Ty) +α2Df(Tx, Ty) +α3Df(x, Ty) +β1Df(T

2x,y) +β2Df(Tx,y) +β3Df(x,y)

6γ1
(
Df(Ty, T 2x) −Df(Ty, x)

)
+ γ2

(
Df(Ty, Tx) −Df(Ty, x)

)
+ δ1

(
Df(y, T 2x) −Df(y, x)

)
+ δ2

(
Df(y, Tx) −Df(y, x)

)
.

Such mapping is called (α1,α2,α3,β1,β2,β3,γ1,γ2, δ1, δ2)-generic 2-generalized Bregman nonspreading
mapping. For some mappings in which the generic 2-generalized Bregman nonspreading mapping con-
tained as special cases in the space, see, for example, [2, 4, 15, 23].
Remark 1.2. If E = H is a real Hibert space, then Df(x,y) = ‖x − y‖2 and consequently the generic
2-generalized Bregman nonspreading mapping reduces to (α′1,α′2,α′3,β′1,β′2,β′3) normally 2-generalized
hybrid in the sense of [19] where α′1 = α1 − γ1,α′2 = α2 − γ2,α′3 = α3 + γ1 + γ2 and β′1 = β1 − δ1,β′2 =
β2 − δ2,β′3 = β3 + δ1 + δ2.

Motivated and inspired by the above results, it is our purpose in this paper to prove that the sequence
generated by the proposed iterative scheme converges strongly to the common element of the set of fixed
point of noncommutative generic 2-generalized Bregman nonspreading mappings and the set of solutions
of the equilibrium problem in Banach spaces. Our result improves and generalizes the results of Alizadeh
and Moradlou [5] and Takahashi et al. [29].

2. Preliminaries

Let E be a real reflexive Banach space with norm ‖ · ‖ and E∗ the dual space of E. Let f : E→ (−∞,+∞]
be a proper, lower semi-continuous and convex function. The Fenchel conjugate of f is the convex function
f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{〈x∗, x〉− f(x) : x∈ E}.

Observe that the Young-Fenchel inequality holds:

〈x∗, x〉 6 f(x) + f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

It is well known that if f : E→ (−∞,+∞] is a proper, convex and lower semi-continuous, then f∗ :
E∗ → (−∞,+∞] is proper, convex and weak∗ lower semi-continuous function; see for example [27].

A sublevel of f is the set of the form levf6r := {x ∈ E : f(x) 6 r} for r ∈ R.
A function f on E is coercive [16] if every sublevel of f is bounded, equivalently

lim
‖x‖→+∞ f(x) = +∞.

Let Br := {x ∈ E : ‖x‖ 6 r} for all r > 0 and SE := {x ∈ E : ‖x‖ = 1}. A function f on E is said to be
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(i) strongly coercive [31] if

lim
‖x‖→+∞

f(x)

‖x‖
= +∞;

(ii) locally bounded if f(Br) is bounded for all r > 0;
(iii) locally uniformly smooth ([31]) if for all r > 0, the limt→0

σr(t)
t = 0, where σr : [0,+∞)→ [0,+∞] is

the function defined by

σr(t) = sup
x∈Br,y∈SE,α∈(0,1)

(αf(x+ (1 −α)ty) + (1 −α)f(x−αty) − f(x))× (α(1 −α))−1

for all t > 0.
(iv) locally uniformly convex (or uniformly convex on bounded subsets of E ([31])) if for all r, t > 0,

ρr(t) > 0, where ρr : [0,+∞)→ [0,+∞] is the gauge of uniform convexity of f, defined by

ρr(t) = inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

(αf(x) + (1 −α)f(y) − f(αx+ (1 −α)y))× (α(1 −α))−1

for all t > 0.

Let x∈ int(dom(f)), the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗,y− x〉6 f(y), ∀y∈ E}.

Definition 2.1 ([8]). The function f is said to be:

(i) essentially smooth, if ∂f is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is strictly convex on

every subset of domf;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.

Remark 2.2. Let E be a reflexive Banach space. Then we have:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex (see [8] Theorem 5.4);
(ii) (∂f)−1 = ∂f∗;

(iii) f is Legendre if and only if f∗ is Legendre (see [8, Corrolary 5.5];
(iv) if f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f∗)−1, ran∇f = dom∇f∗ = int(dom(f∗))

and ran ∇f∗ = dom∇f = int(dom(f)), (see [8, Theorem 5.10].

Various examples of Legendre functions were given in [7, 8] . One important and interesting Legendre
function is 1

p‖ · ‖
p (1 < p <∞) when E is a smooth and strictly convex Banach space. In this case,

the gradient ∇f of f coincides with the generalized duality mapping of E, i.e, ∇f = Jp (1 < p <∞). In
particular, ∇f = I the identity mapping in Hilbert spaces.

Definition 2.3 ([11, 18]). Let E be a Banach space. The function f : E→ R is said to be a Bregman function
if the following conditions are satisfied:

(i) f is continuous, strictly convex and Gâteaux differentiable;
(ii) the set {y ∈ E : Df(x,y) < r} is bounded for all x ∈ E and r > 0.

The following result can be found in [1] (see also [12, 18]).

Lemma 2.4. Let E be a reflexive Banach space and f : E → R be a strongly coercive Bregman function. Let
Vf : E× E∗ → [0,+∞) be a function associated with f defined by

Vf(x, x∗) = f(x) − 〈x, x∗〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗. (2.1)

Then the following assertions hold:
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(i) Vf(x, x∗) = Df(x,∇f∗(x∗)), ∀x ∈ E, x∗ ∈ E∗;
(ii) Vf(x, x∗) + 〈y∗,∇f∗(x∗) − x〉 6 Vf(x, x∗ + y∗), ∀x ∈ E, x∗ ∈ E∗.

Also from equation (2.1), it is obvious that Df(x,y) = Vf(x,∇f(y)) and Vf is convex in the second
variable. Therefore for t ∈ (0, 1) and x,y ∈ E, we have

Df(z,∇f∗(t∇f(x) + (1 − t)∇f(y))) 6 tDf(z, x) + (1 − t)Df(z,y).

A Bregman projection [10] of x ∈ int(dom(f)) onto the nonempty, closed and convex set C ⊂ domf is the
unique vector PfC(x) ∈ C satisfying

Df(P
f
C(x), x) = inf{Df(y, x) : y ∈ C}.

The following is well-known concerning Bregman projections.

Lemma 2.5 ([12]). Let C be nonempty, closed and convex subset of a reflexive Banach space E. Let f : E→ R be a
Gâteaux differentiable and totally convex function and let x ∈ E. Then

(a) z = PfCx if and only if 〈∇f(x) −∇f(z),y− z〉 6 0,∀y ∈ C;
(b) Df(y,PfCx) +Df(P

f
Cx, x) 6 Df(y, x), ∀x ∈ E,y ∈ C.

The following result is proved in [31].

Lemma 2.6 ([31]). Let E be a reflexive Banach space and let f : E→ R be a continuous convex function which is
strongly coercive. Then the following assertions are equivalent

(1) f is bounded on bounded sets and uniformly smooth on bounded sets;
(2) f∗ is Fréchet differentiable and f∗ is uniformly norm-to-norm continuous on bounded sets;
(3) domf∗ = E∗, f∗ is strongly coercive and uniformly convex on bounded sets.

Lemma 2.7 ([24]). Let E be a Banach space and let g : E → R be a Gâteaux differentiable function which is
uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded sequences in E. Then the
following are equivalent.

(1) limn→∞Df(xn,yn) = 0;
(2) limn→∞ ‖xn − yn‖ = 0.

Let f : E→ (−∞,+∞] be a convex and Gâteaux differentiable function. The modulus of total convexity
of f at x ∈ int(dom(f)) is the function vf(x, .) : int(dom(f))× [0,+∞]→ [0,+∞] defined by

vf(x, t) = inf{Df(y, x) : y ∈ domf, ‖y− x‖ = t}.

The function f is totally convex at x if vf(x, t) > 0 whenever t > 0. The function f is called totally convex
if it is totally convex at every point x ∈ int(dom(f)) and is said to be totally convex on bounded sets if
vf(B, t) > 0, for any nonempty bounded subset B of E and t > 0, where the modulus of total convexity of
the function f on the set B is the function Vf : int(dom(f))× [0,+∞]→ [0,+∞] defined by

Vf(B, t) = inf{vf(x, t) : x ∈ B∩ domf}.

Lemma 2.8 ([26]). If x ∈ int(dom(f)), then the following statements are equivalent:

(i) the function f is totally convex at x;
(ii) for any sequence {yn} ⊂ domf,

lim
n→+∞Df(yn, x) = 0⇒ lim

n→+∞ ‖yn − x‖ = 0.
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Lemma 2.9 ([21]). Let f : E→ (−∞,+∞] be a Legendre function such that ∇f∗ is bounded on bounded subsets of
int(domf∗). Let x ∈ int(dom(f)). If {Df(x, xn)}n∈N is bounded, then so is the sequence {xn}n∈N.

Lemma 2.10 ([25]). Let f : E → (−∞,+∞] be a Legendre function. Let C be a nonempty closed convex subset of
int(domf) and T : C→ C be a quasi -Bregman nonexpansive mapping. Then F(T) is closed and convex.

The following results will play vital roles in establishing our main results

Lemma 2.11 ([30]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 6 (1 −αn)an +αnδn, n > n0,

where {αn} ⊂ (0, 1) and {δn} is a real sequence satisfying the following conditions limn→∞ αn = 0,
∑∞
n=1 αn =∞ and lim supn→∞ δn 6 0. Then limn→∞ an = 0.

Lemma 2.12 ([20]). Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of {n} such
that ani 6 ani+1 for all i ∈ N. Then there exists a non-decreasing sequence {mk} ⊂ N such that mk → ∞ and
the following properties are satisfied by all (sufficiently large) numbers k ∈N:

amk
6 amk+1, ak 6 amk+1.

Infact, mk = max{j 6 k : aj < aj+1}.

To solve equilibrium problem, the bifunction g : C × C → R is assumed to satisfy the following
conditions as can be seen in [9]:

(A1) g(x, x) = 0, ∀x ∈ C;
(A2) g is monotone that is, g(x,y) + g(y, x) 6 0, ∀x,y ∈ C;
(A3) lim supt→∞ g(x+ t(z− x),y) 6 g(x,y), ∀x,y, z ∈ C;
(A4) the function y→ g(x,y) is convex and lower semi continuous.

The resolvent of the bifunction g [14] is the operator Tr : E→ 2C defined by

Trx = {x ∈ C : g(x,y) +
1
r
〈∇fx−∇fz,y− x〉 > 0, ∀y ∈ C}.

Lemma 2.13 ([25]). Let E be a real reflexive Banach space and C be a nonempty closed convex subset of E. Let
f : E → (−∞,+∞] be a Legendre function. If the bifunction g : C×C → R satisfies conditions (A1)-(A4), then
the following hold:

(i) Tr is single-valued;
(ii) Tr is a Bregman firmly nonexpansive operator;

(iii) F(Tr) = EP(g);
(iv) EP(g) is closed and convex;
(v) for all x ∈ E and p ∈ F(Tr) we have Df(p, Trx) +Df(Trx, x) 6 Df(p, x).

3. Main results

In this section, E is consider to be a real reflexive Banach space and by xn → x and xn ⇀ x in E
we mean that the sequence {xn} converges strongly and weakly to x respectively. We propose a Halpern
type iterative scheme for noncommutative generic 2-generalized Bregman nonspreading mappings with
equilibrium in Banach spaces. We then prove that the sequence generated by such algorithm converges
strongly to the common element of the set of fixed point of noncommutative generic 2-generalized Breg-
man nonspreading mappings and the set of solutions of the equilibrium problem in the space. We begin
with the following Lemma.
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Lemma 3.1. Let f : E→ R be a strictly convex function which is uniformly Fréchet differentiable on bounded
subsets of E. Let C be a nonempty subset of int(dom(f)) and T : C→ C be a generic 2-generalized Bregman
nonspreading mapping. If xn ⇀ p, (xn − Txn)→ 0 and (xn − T 2xn)→ 0 as n→∞, then p ∈ F(T).

Proof. Let {xn} ⊂ C be a sequence such that xn ⇀ p, (xn− Txn)→ 0 and (xn− T
2xn)→ 0 as n→∞. Since

T : C→ C is a generic 2-generalized Bregman nonspreading mapping then following similar techniques
as in [3, Lemma 3.6] , we see that Df(p, Ty) 6 Df(p,y) for all y ∈ C. Thus, setting y = p together with
strict convexity of f we get p ∈ F(T). This completes the proof.

Proposition 3.2. Let C be a nonempty subset of int(dom(f)) and T : C→ C be a generic 2-generalized Bregman
nonspreading mapping. If F(T) 6= ∅, then T is quasi Bregman nonexpansive.

Proof. Since T : C→ C is a generic 2-generalized Bregman nonspreading mapping with F(T) 6= ∅ then let
x ∈ F(T) so that x = Tx = T 2x. Thus, from the definition of T we get

α1Df(x, Ty) +α2Df(x, Ty) +α3Df(x, Ty) +β1Df(x,y) +β2Df(x,y) +β3Df(x,y)
6 γ1

(
Df(Ty, x) −Df(Ty, x)

)
+ γ2

(
Df(Ty, x) −Df(Ty, x)

)
+ δ1

(
Df(y, x) −Df(y, x)

)
+ δ2

(
Df(y, x) −Df(y, x)

)
for all y ∈ C. This implies

(α1 +α2 +α3)Df(x, Ty) + (β1 +β2 +β3)Df(x,y) 6 0, ∀y ∈ C.

Since
∑3
i=1 αi > 0, then it holds that

Df(x, Ty) 6
−(β1 +β2 +β3)

(α1 +α2 +α3)
Df(x,y), ∀y ∈ C.

Also, using the fact that
∑3
i=1(αi +βi) > 0, we get

Df(x, Ty) 6 Df(x,y), ∀y ∈ C.

Hence T is quasi Bregman nonexpansive. This completes the proof

Theorem 3.3. Let f : E→ R be strongly coercive, Legendre, uniformly Fréchet differentiable and totally convex
function which is bounded on bounded subsets of E. Let C be a nonempty, closed and convex subset of int(domf) and
g : C×C→ R be a bifunction satisfying (A1)-(A4). Let S, T : C→ C generic 2-generalized Bregman nonspreading
mappings such that F = F(S)∩ F(T)∩ EP(g) 6= ∅. Let {xn} be a sequence generated by u, x1 ∈ C{

yn = ∇f∗(αn∇fxn +βn∇fTrnun + γn∇fvn),
xn+1 = PfC∇f∗(δn∇fu+ (1 − δn)∇fyn), ∀n ∈N,

(3.1)

where un = ∇f∗(εn∇fSxn+(1−εn)∇fTxn), vn = ∇f∗(λn∇fS2xn+(1−λn)∇fT 2xn) with the real sequences
{αn}, {βn}, {γn}, {εn}, {λn} ⊂ [a,b] ⊂ (0, 1) satisfying αn + βn + γn = 1 and (C1) : limn→∞ δn = 0, (C2) :∑∞
n=1 δn = +∞. Then {xn} converges strongly to z = PfF(u).

Proof. Since S and T are generic 2-generalized Bregman nonspreading mappings with nonempty fixed
points then by Proposition 3.2, they are quasi Bregman nonexpansive mappings. Thus, it follows from
Lemmas 2.10 and 2.13 that F is closed and convex. Hence PfF(u) is well defined. Now, let z = PfF(u) ⊂ F

so that

Df(z,un) = Df(z,∇f∗(εn∇fSxn + (1 − εn)∇fTxn))
6 εnDf(z,Sxn) + (1 − εn)Df(z, Txn)
6 εnDf(z, xn) + (1 − εn)Df(z, xn) = Df(z, xn).
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Put zn = Trnun so that

Df(z, zn) = Df(z, Trnun) 6 Df(z,un) −Df(Trnun,un) 6 Df(z, xn).

Similarly,

Df(z, vn) = Df(z,∇f∗(λn∇fS2xn + (1 − λn)∇fT 2xn))

6 λnDf(z,Sxn) + (1 − λn)Df(z, Txn)
6 λnDf(z, xn) + (1 − λn)Df(z, xn) = Df(z, xn).

Also,

Df(z,yn) = Df(z,αn∇fxn +βn∇fzn + γn∇fvn))
6 αnDf(z, xn) +βnDf(z, zn) + γDf(z, vn)
6 αnDf(z, xn) +βDf(z, xn) + δDf(z, xn) = Df(z, xn).

And

Df(z, xn+1) = Df(z,∇PfCf∗(δn∇fu+ (1 − δn)∇fyn))
6 δnDf(z,u) + (1 − δn)Df(z,yn)
6 δnDf(z,u) + (1 − δn)Df(z, xn).

(3.2)

Thus, by induction
Df(z, xn+1) 6 max{Df(z,u),Df(z, xn)}, ∀n > 1.

This implies that the sequence {Df(z, xn)} is bounded. Therefore, by Lemma 2.9 the sequence {xn} is
bounded. Hence, {un}, {vn}, {yn} and {zn} are all bounded. Since f is bounded on a bounded subsets of
E then by proposition 1.1.11 of [11], ∇f is also bounded on bounded subsets of E∗. Hence the sequences
{∇f(xn)}, {∇f(un)} , {∇f(vn)} and {∇f(zn)} are bounded in E∗. We know from [31, Proposition 3.6.3] that
domf∗ = E∗ and f∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let s = sup{‖∇f(xn)‖, ‖∇f(un)‖, ‖∇f(vn)‖, ‖∇f(zn)‖} and p∗s : E∗ → R be the gauge function of
uniform convexity of the conjugate function f∗. Thus,

Df(z,yn) = Df(z,∇f∗(αn∇fxn +βn∇fzn + γn∇fvn))
= Vf(z,αn∇fxn +βn∇fzn + γn∇fvn))
= f(z) − 〈z,αn∇fxn +βn∇fzn + γn∇fvn〉+ f∗(αn∇fxn +βn∇fzn + γn∇fvn)
6 f(z) −αn〈z,∇fxn〉−βn〈z,∇f(zn)〉+ γn〈z,∇f(vn)〉
+αnf

∗(∇f(xn)) +βnf∗(∇f(zn)) + γnf∗(∇f(vn)) −αnβnp∗s
(
‖∇f(xn) −∇f(zn)‖

)
= αn(f(z) − 〈z,∇f(xn)〉+ f∗(∇f(xn))) +βn(f(z) − 〈z,∇f(zn)〉+ f∗(∇f(zn))
+ γn(f(z) − 〈z,∇fvn〉+ f∗(∇f(zn))] −αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
= αnVf(z,∇f(xn)) +βnVf(z,∇f(zn)) + γnVf(z,∇f(vn))
−αnβnp

∗
s

(
‖∇f(xn) −∇f(zn)‖

)
= αnDf(z, xn) +βnDf(z, zn) + γnDf(z, vn) −αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
6 αnDf(z, xn) +βnDf(z, xn) + γnDf(z, xn) −αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
= Df(z, xn) −αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
.

Thus,
Df(z,yn) 6 Df(z, xn) −αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
. (3.3)

Similarly,
Df(z,yn) 6 Df(z, xn) −αnγnp∗s

(
‖∇f(xn) −∇f(vn)‖

)
. (3.4)
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It follows from (3.2), (3.3), and (3.4) that

Df(z, xn+1) 6 δnDf(z,u) + (1 − δn)Df(z,yn)
6 δnDf(z,u) + (1 − δn)Df(z, xn) − (1 − δn)αnβnp

∗
s

(
‖∇f(xn) −∇f(zn)‖

)
= δn[Df(z,u) −Df(z, xn) +αnβnp∗s

(
‖∇f(xn) −∇f(zn)‖

)
]

+Df(z, xn) −αnβnp∗s
(
‖∇f(xn) −∇f(zn)‖

)
.

Put k1 = sup{|Df(z,u) −Df(z, xn)|+ αnβnp∗s
(
‖∇f(xn) −∇f(zn)‖

)
} and k2 = sup{|Df(z,u) −Df(z, xn)|+

αnγnp
∗
s

(
‖∇f(xn) −∇f(vn)‖

)
}, then we get

Df(z, xn+1) 6 Df(z, xn) −αnβnp∗s
(
‖∇f(xn) −∇f(zn)‖

)
+ δnk1

and
Df(z, xn+1) 6 Df(z, xn) −αnγnp∗s

(
‖∇f(xn) −∇f(vn)‖

)
+ δnk2.

These imply
αnβnp

∗
s

(
‖∇f(xn) −∇f(zn)‖

)
6 Df(z, xn) −Df(z, xn+1) + δnk1 (3.5)

and
αnγnp

∗
s

(
‖∇f(xn) −∇f(vn)‖

)
6 Df(z, xn) −Df(z, xn+1) + δnk2. (3.6)

We now consider the following cases.

Case 1. Assume the sequence {Df(z, xn)} is non-increasing. Since it is bounded, then it is convergent.
Thus, we have that

Df(z, xn) −Df(z, xn+1)→ 0 as n→∞. (3.7)

Now, with the use of (C1), equations (3.5), (3.6), and (3.7) we have

αnβnp
∗
s

(
‖∇f(xn) −∇f(zn)‖

)
→ 0 as n→∞

and
αnγnp

∗
s

(
‖∇f(xn) −∇f(vn)‖

)
→ 0 as n→∞.

By using the property of p∗s and the fact that αn,βn,γn ∈ [a,b] ⊂ (0, 1), we obtain

lim
n→∞ ‖∇f(xn) −∇f(zn)‖ = 0, lim

n→∞ ‖∇f(xn) −∇f(vn)‖ = 0. (3.8)

Also, from (3.1) and (3.8) we get

‖∇f(xn) −∇f(yn)‖ 6 αn‖∇f(xn) −∇f(xn)‖+βn‖∇f(xn) −∇f(zn)‖
+ γn‖∇f(xn) −∇f(vn)‖ → 0 as n→∞.

(3.9)

Since f is strongly coercive and uniformly convex on bounded subsets of E, then by Lemma 2.6 (2), f∗ is
Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous on bounded subsets of E. Thus, we
obtain from (3.8) and (3.9) that

lim
n→∞ ‖xn − zn‖ = 0, lim

n→∞ ‖xn − vn‖ = 0, lim
n→∞ ‖xn − yn‖ = 0. (3.10)

Thus, by Lemma 2.7, we get that limn→∞Df(vn, xn) = 0. Since Df(z, zn) +Df(zn,un) 6 Df(z,un) 6
Df(z, xn), then

Df(zn,un) 6 Df(z, xn) −Df(z, zn)
6 |Df(zn, xn) + 〈∇fzn −∇fxn, z− xn〉|
6 Df(zn, xn) + ‖∇fzn −∇fxn‖‖z− xn‖ → 0 as n→∞.
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Thus, by Lemma 2.8 we get
lim
n→∞ ‖zn − un‖ = 0.

This together with (3.10) implies
lim
n→∞ ‖xn − un‖ = 0. (3.11)

Thus, by Lemma 2.7, we get that limn→∞Df(un, xn) = 0. On the other hand,

Df(z,un) 6 εnDf(z,Sxn) + (1 − εn)Df(z, Txn) − εn(1 − εn)ρ
∗
s(‖∇fSxn −∇fTxn‖)

= Df(z, xn) − εn(1 − εn)ρ
∗
s(‖∇fSxn −∇fTxn‖).

This implies,

εn(1 − εn)ρ
∗
s(‖∇fSxn −∇fTxn‖) 6 Df(z, xn) −Df(z,un)

6 Df(un, xn) + ‖∇fun −∇fxn‖‖z− xn‖
→ 0 as n→∞.

Similarly,

λn(1 − λn)ρ
∗
s(‖∇fS2xn −∇fT 2xn‖) 6 Df(z, xn) −Df(z, vn)

6 Df(vn, xn) + ‖∇fvn −∇fxn‖‖z− xn‖
→ 0 as n→∞.

Thus,
‖∇fSxn −∇fTxn‖ → 0 and ‖∇fS2xn −∇fT 2xn‖ → 0 as n→∞. (3.12)

From (3.12), we get

‖Sxn − Txn‖ → 0 and ‖S2xn − T 2xn‖ → 0 as n→∞. (3.13)

Using (3.11) and (3.12), we see that

‖∇fxn −∇fTxn‖ 6 ‖∇fxn −∇fun‖+ ‖fun −∇fTxn‖
= ‖fxn −∇fun‖+ εn‖∇fSxn −∇fTxn‖
→ 0 as n→∞.

(3.14)

Similarly, using (3.8) and (3.12) we have

‖∇fxn −∇fT 2xn‖ 6 ‖∇fxn −∇fvn‖+ ‖fvn −∇fT 2xn‖
= ‖fxn −∇fvn‖+ λn‖∇fS2xn −∇fT 2xn‖
→ 0 as n→∞.

(3.15)

From (3.14) and (3.15) we get

lim
n→∞ ‖xn − Txn‖ = 0 and lim

n→∞ ‖xn − T 2xn‖ = 0. (3.16)

Using (3.13) and (3.16), we get

lim
n→∞ ‖xn − Sxn‖ = 0 and lim

n→∞ ‖xn − S2xn‖ = 0. (3.17)

Since E is reflexive and the sequence {xn} is bounded, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ x. This together equations (3.16), (3.17), and Lemma 3.1 implies that x ∈ F(S)∩ F(T).
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Also, using (3.10), we obtain znk ⇀ x. Since zn = Trnun from the definition of Tr, we get

g(zn,y) +
1
rn
〈∇fzn −∇fun,y− zn〉 > 0, ∀y ∈ C.

Hence
g(znk ,y) +

1
rnk
〈∇fznk −∇funk ,y− znk〉 > 0, ∀y ∈ C.

Using (A2), we get

g(y, znk) 6 −g(znk ,y) 6
1
rnk
〈∇fznk −∇funk ,y− znk〉

6
1
rnk
‖∇fznk −∇funk‖‖y− znk‖, ∀y ∈ C.

Taking limit as k → ∞ of the above inequality and with use of (A4) and the fact that znk ⇀ x, we get
g(y, x) 6 0. Define yt = ty+ (1 − t)x for 0 < t < 1 and y ∈ C. Since x,y ∈ C then yt ∈ C which yields
that g(yt, x) 6 0.

Using (A1) we see that

0 = g(yt,yt) 6 tg(yt,y) + (1 − t)g(yt, x) 6 tg(yt,y).

Thus, g(yt,y) > 0. Now letting t → 0 and using (A3) we see that g(x,y) > 0 for any y ∈ C. This implies
x ∈ EP(g). Hence x ∈ F.

Now, let
wn = ∇f∗[δn∇f(u) + (1 − δn)∇f(yn)],

so that

Df(yn,wn) = Df(yn,∇f∗[δn∇f(u) + (1 − δn)∇fyn])
6 δnDf(yn,u) + (1 − δn)Df(yn,yn)
= δnDf(yn,u)→ 0 as n→∞.

It follows from Lemma 2.8 that
lim
n→∞ ‖yn −wn‖ = 0. (3.18)

Also, from (3.10) and (3.18) we see that

lim
n→∞ ‖xn −wn‖ = 0. (3.19)

Using (a) of Lemma 2.5 and equation (3.19), we can conclude that

lim sup
n→∞ 〈∇f(u) −∇f(z),wn − z〉 = lim sup

n→∞ [〈∇f(u) −∇f(z),wn − xn〉+ 〈∇f(u) −∇f(z), xn − z〉]

= lim sup
n→∞ 〈∇f(u) −∇f(z), xn − z〉

= lim
k→∞〈∇f(u) −∇f(z), xnk − z〉

= 〈∇f(u) −∇f(z), x− z〉 6 0, , ∀ x ∈ F.

(3.20)

Using Lemmas 2.4 and 2.5, we see that

Df(z, xn+1) = Df(z, PfC(wn))
6 Df(z,wn)
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= Vf(z,∇f(wn))
6 Vf(z,∇f(wn) −αn(∇f(u) −∇f(z)) + δn〈∇f(u) −∇f(z),wn − z〉
= Vf(z, δn∇f(u) + (1 − δn)∇f(yn) −αn(∇f(u) −∇f(z)) + δn〈∇f(u) −∇f(z),wn − z〉 (3.21)
= Vf(z, (1 − δn)∇f(yn) + δn∇f(z)) + δn〈∇f(u) −∇f(z),wn − z〉
6 (1 − δn)Vf(z,∇f(yn)) + δnVf(z,∇f(z)) + δn〈∇f(u) −∇f(z),wn − z〉
= (1 − δn)Df(z,yn) + δnDf(z, z) + δn〈∇f(u) −∇f(z),wn − z〉
6 (1 −αn)Df(z, xn) + δn〈∇f(u) −∇f(z),wn − z〉.

Therefore by Lemma 2.11, inequalities (3.20) and (3.21), we obtain that Df(z, xn) → 0 as n → ∞. Hence
by Lemma 2.8, xn → z = PfF(u) as n→∞.

Case 2. Let assume that the sequence {Df(z, xn)} is not non-increasing and take {Φn} = {Df(z, xn)}. Let
there exists a subsequence {ni} of {n} such that for all i ∈N, Φni 6 Φni+1. For some sufficiently large N
and for all n > N, let the map τ : N→N be defined by

τ(n) = max{k 6 n : Φk 6 Φk+1},

so that from Lemma 2.12 we see that the sequence τ(n) is non-decreasing with τ(n)→∞ as n→∞ and
Φτ(n) 6 Φτ(n)+1, Φn 6 Φτ(n)+1. Using the fact that δτ(n) → 0 as τ(n) → ∞ and by equation (3.5) and
(3.6) we obtain

p∗s
(
‖∇f(xτ(n)) −∇f(zτ(n))‖

)
→ 0, p∗s

(
‖∇f(xτ(n)) −∇f(vτ(n))‖

)
→ 0.

Following similar argument as in Case 1, we see that

lim
n→∞ ‖xτ(n) − Txτ(n)‖ = 0, lim

n→∞ ‖xτ(n) − T 2xτ(n)‖ = 0

and
lim
n→∞ ‖xτ(n) − Sxτ(n)‖ = 0, lim

n→∞ ‖xτ(n) − S2xτ(n)‖ = 0.

Also,
lim sup
τ(n)→∞〈∇f(u) −∇f(z),wτ(n) − z〉 6 0.

It follows from equation (3.21) that

Φτ(n)+1 6 Φτ(n) + δτ(n)[〈∇f(u) −∇f(z), xτ(n) − z〉−Φτ(n)].

From the fact that Φτ(n) 6 Φτ(n)+1 and Φτ(n) > 0, the previous inequality yields

Φτ(n) 6 〈∇f(u) −∇f(z),wτ(n) − z〉 → 0 as τ(n)→∞.

Thus, limτ(n)→∞Φτ(n) = limτ(n)→∞Φτ(n)+1 = 0. Since 0 6 Φn 6 Φτ(n)+1, it implies that limn→∞Φn =
limn→∞Df(z, xn) = 0. Therefore, by Lemma 2.8, we arrived at xn → z as n → ∞. Hence in view of the
above two cases, we see that the sequence {xn} converges strongly to z = PfF(u). This completes the
proof.

As a consequence, in view of Remark 1.2, the following result is obtained by applying Theorem 3.3.

Corollary 3.4. Let C be a subset of a real Hilbert space and g : C×C→ R be a bifunction satisfying (A1)-(A4). Let
S, T : C→ C be normally 2-generalized hybrid mappings with f(x) = ‖x‖2 such that F = F(S)∩ F(T)∩EP(g) 6= ∅.
Let {xn} be a sequence generated by u, x1 ∈ C,{

yn = αnxn +βnTrnun + γnvn,
xn+1 = δnu+ (1 − δn)yn,

where un = εnSxn + (1 − εn)Txn,vn = λnS
2xn + (1 − λn)T

2xn with the real sequences {αn}, {βn}, {γn}, {εn},
{λn} ⊂ [a,b] ⊂ (0, 1) satisfying αn + βn + γn = 1 and (C1) : limn→∞ δn = 0, (C2) :

∑∞
n=1 δn = +∞. Then

{xn} converges strongly to z = PF(u), where PF(u) is the metric projection of C onto F.
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Proof. By remark 1.2, the generic 2-generalized Bregman nonspreading mapping reduces to normally
2-generalized hybrid mapping in Hilbert space, i.e., there exists α′1,α′2,α′3,β′1,β′2,β′3 ∈ R such that

α′1‖T 2x− Ty‖2 +α′2‖Tx− Ty‖2 +α′3‖x− Ty‖2 +β′1‖T 2x− y‖2 +β′2‖Tx− y‖2 +β′3‖x− y‖2 6 0, ∀ x,y ∈ C,

where α′1 = α1 − γ1,α′2 = α2 − γ2,α′3 = α3 + γ1 + γ2 and β′1 = β1 − δ1,β′2 = β2 − δ2,β′3 = β3 + δ1 + δ2

satisfying
∑3
i=1(α

′
i +β

′
i) =

∑3
i=1(αi +βi) > 0 and

∑3
i=1 α

′
i =
∑3
i=1 αi > 0. Thus, by Theorem 3.3 we see

that the sequence {xn} converges strongly to z = PF(u). This completes the proof.
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