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Abstract

In this paper, we introduce the concept of generalized Suzuki type «-Z-contraction concerning a simulation function ¢ in
b-metric space and prove the existence of fixed point results for this contraction. Our result extend the fixed point result of [A.
Padcharoen, P. Kumam, P. Saipara, P. Chaipunya, Kragujevac J. Math., 42 (2018), 419-430].
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1. Introduction and Preliminaries

In 1993, Czerwik [4] generalized the concept of metric space by introducing a real number s > 1 in the
triangle inequality of metric space and give the notion of b-metric spaces. Since then several papers have
been published on the fixed point theory of various classes of single-valued and multi-valued operators
in b-metric spaces (see, [3, 5, 11, 14]).

Definition 1.1 ([4]). Let X be a non-empty set and s > 1 be a given real number. A function d : X x X —
[0, 00) is said to be a b-metric space if, for all x,y, z € X, the following conditions are satisfied:

(i) dix,y) =0iff x =vy;
(i) d(x,y)=d(y,x);
(iii) d(x,z) < sld(x,y) +d(y,z)].
The pair (X, d) is called a b-metric space.
It should be noted that, every metric space is a b-metric space with s = 1 and hence the class of

b-metric spaces is larger than the class of metric spaces. But a metric space does not need to be b-metric
space (see [13, example 1.4]).
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Definition 1.2 ([3]). Let (X, d) be a b-metric space.

(i) A sequence {xn}in X is called b-convergent if and only if there exists x € X such that d(xn,x) — 0,
as n — oo. In this case, we write limn o0 Xnn — X.

(ii) {xn}in X is said to be b-Cauchy if and only if d(xn,Xm) — 0, as n, m — oo.
(iif) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence {x,, } in X is convergent.

In 2012, Samet et al. [15] introduced the concept of x-admissible mapping.

Definition 1.3 ( [15]). Let T be a self mapping on X and o : X x X — [0, 00) be a function. We say that T is
a-admissible, if x,y € X,

alx,y) > 1= a(Tx, Ty) > 1.

The concept of x-admissible mappings has been used by several researchers (see for example [1, 10]).
Later, Karapinar et al. [7] introduced the notion of triangular x-admissible mappings.

Definition 1.4 ([7]). Let T: X = X and «: X x X = R. Then T is said to be triangular x-admissible if

(T1) Tis a-admissible;
(T2) a(x,y) >1and a(y,z) > 1= a(x,z) > 1, x,y,z€ X

Lemma 1.5 ([7]). Let T be a triangular x-admissible mapping. Assume that there exists xo € X such that
a(xo, Txg) = 1. Define sequence {xn} by xn = T™xo. Then &(xm,xn) = 1 for all m,n € N with m < n.

Recently, in 2015, Khojasteh et al. [8] introduced the notion of simulation function with a view to
consider a new class of contractions, called Z-contraction with respect to a simulation function. Such
family generalized the Banach contraction and unified some known nonlinear contractions.

Definition 1.6 ([8]). A simulation function is a mapping ( : [0, c0) x [0,00) — R, satisfying the following
conditions:

i) (&) ¢(0,0) =0;
(i) (&) C(t,s) <s—t, foralls, t>0;
(iii) (C3) if {tn},{sn} are sequences in (0, 00) such that limy 0 tn =limp 00 51 >0,

then limsup, |  C(tn,sn) < 0. We denote the set of all simulation functions by Z.
Example 1.7 ([8]). Let ¢ : [0, 00) x [0,00) — R, be defined by

(1) ¢(t,s) =P(s) — d(t) for all t,s € [0,00), where §, : [0,00) — [0,00) are two continuous functions
such that P (t) = ¢(t) =0if and only if t =0 and P(t) < t < P(t) forall t > 0;

. B f(t,s)
(i) ¢(t,s) = s— o)

with respect to each variable such that f(t,s) > g(t,s) forallt,s >0;

(iii) ¢(t,s) =s—d(s)—tforallt,s € [0,00), where ¢ : [0,00) — [0, 00) is a continuous functions such that
¢(t) =0if and only if t = 0.

t for all t,s € [0,00), where f,g : [0,00) — [0,00) are two continuous functions

These are simulation functions.

Definition 1.8 ([8]). Let (X, d) be a metric space, T : X — X be a mapping and ¢ € Z. Then T is called a
Z-contraction with respect to ( if the following condition is satisfied

¢(d(Tx, Ty), d(x,y)) =0,

for all x,y € X.
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Later, in 2017, Kumam et al. [9] introduce the notion of Suzuki type Z-contraction as follows.

Definition 1.9 ([9]). Let (X, d) be a metric space, T : X — X be a mapping and ¢ € Z. Then T is called a
Suzuki type Z-contraction with respect to ¢, if the following condition is satisfied

2d06 Tx) < dlx,y) = ¢(d(Tx Ty), dlx,y)) > 0,

for all x,y € X, with x # y.

Remark 1.10 ([9]). It is clear from the definition of simulation function that ((t,s) < s—t < 0, for all
t > s > 0. Therefore if T is a Suzuki type Z-contraction with respect to ¢, then

1
Ed(X/TX) < d(Xzy) = d(TX,TU) < d(X/U);

for all distinct x,y € X.

Theorem 1.11 ([9]). Let (X, d) be a metric space and T : X — X be a Suzuki type Z-contraction with respect to
C € Z. Then T has at most one fixed point.

In 2018, Padcharoen et al. [12] introduced the generalized Suzuki type Z-contraction in metric space
as follows.

Definition 1.12 ([12]). Let (X, d) be a metric space, T : X — X a mapping and ¢ € Z. Then T is called a
generalized Suzuki type Z-contraction with respect to (, if the following condition is satisfied

Sd06 Tx) < dlx,y) = ¢(d(Tx, Ty), Mlx,y) >0,

for all distinct x,y € X, where

d(x, Ty) + d(y, Tx) }
5 .

Motivated and inspired by Definition 1.12 and the work of Babu et al. [2], we introduced the definition
of generalized Suzuki type o-Z-contraction with respect to ¢ in b-metric space.

M(x,y) = max {d(x,y), d(x, Tx), d(y, Ty),

Definition 1.13. Let (X, d) be a b-metric space with coefficient s > 1 and « : X x X — R be a function. A
mapping T : X — X is said to be a generalized Suzuki type x-Z contraction with respect to ( if there exists
a simulation function ¢ € Z such that

1
Z—Sd(X,TX) < d(x,y) = ¢(s*a(x,y)d(Tx, Ty), M1(x,y)) >0, (1.1)
for all distinct x,y € X, where
d X,T + d ,TX
Mr(x,y) = max {d(x,y),d(x, Tx),d(y, Ty), ( U)ZS (y )}.

Remark 1.14. It is clear from the definition of simulation function that {(t,s) <s—t <0, forallt > s > 0.
Therefore if T is a generalized Suzuki type x-Z-contraction with respect to ¢, then

Zl—sd(x,Tx) <d(x,y) = s4<x(x,y)d(Tx,Ty) < M(x,y)),

for all distinct x,y € X.

2. Main result

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient s > 1 and oc : X x X — R be a function. Let
T: X — X be a self mapping and ¢ € Z. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type o-Z-contraction with respect to (;
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(ii) T is a triangular o admissible;

(iii) there exists xg € X such that x(xg, Txg) > 1;

(iv) either T is continuous or for any sequence {xn} in X with &(Xn,Xn+1) = 1 for all n € Nq such that
Xn — X € X asn — oo, we have o(xn,x) =1 for all n € No.

Then T has a fixed point x* € X.

Proof. By assumption (iii), there exists a point xg € X such that «(xg, Txg) > 1. Define a sequence {x,} in
X by xn41 = Txn for all n € Ny (wWhere INg = IN U{0}, IN = set of natural numbers). If there exists an
ng such that x,, 11 = xn, for some ng € Ny, then x,, is a fixed point of T, which completes the proof.
Therefore we assume that x, # xn, 1, for all n € INy. Hence we have

1
Z—Sd(xn, Txn) < d(xn,Xn41) forall n € INp.

The mapping T is triangular x-admissible by Lemma 1.5, we have
o(Xn,Xns1) =1, forall n € INy.
Then by (1.1), we have
0 < (s*at(xn, Xna1)A(Txn, Txng1), MT (X, Xni1) < M (xn, Xn41) — s*ot(xn, Xng1)d(Txn, TXn41).
Consequently, we drive that
d(xn 11, xn12) < statlxn, Xn 1) d(Txn, Txn1) < M1 (xn, Xng1)-
Thus we have
d(xn+1,%n+2) < Mr(Xn, Xn41), (2.1)

where

d(xn, Txn11) + d(xn41, Txn) }
2s

d(xn, Xn+2) + d(xn+1/ Xn—!—l) }
2s

MT (anxn+1) = max {d(xnl Xn+1)1 d(xnz TXT‘L)/ d(xn—l—l/ TXn—O—l)/

= max {d(xnl Xn+1)/ d(an Xn+1)/ d(Xn+11 XTL—O—Z)/

d(xn, Xn+2) }

= max {d(X’TLI XTL+1)/ d(XnJrl/ XTL+2)/ 25

Since

d(xnranrZ) < S[d(xn/ Xn—!—l) + d(xn—H/ Xn+2)]

2 X 25 < max{d(xn, XTL+1)1 d(Xn+], Xn+2)}/

then we get

Mt (xn, xn+1) < max{d(xn, xn+1), d(Xn+1, Xn+2) )
If d(xn, xni1) < d(Xni1, Xni2), then

max{d(xn, Xn+1), d(xn+1, Xn+2)} = d(Xn41, Xn+2).
Then (2.1) becomes

d(Xn+1,Xn+2) < d(Xn4+1,Xn+2),
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(2.2)

which is a contradiction. Thus we conclude that
d(anrl/ Xn+2) < d(xn, Xn+1)-

Which implies that d(xy,Xn+1) is monotonically decreasing sequence of non negative real numbers. Thus
there exists v > 0, such that limn o d(Xn,Xn+1) = 7. We shall prove that r = 0. Suppose on the contrary

that r > 0. Letting tn, = o(xn, Xn+1)d(Xn+1, Xn+2) and sy = d(xn, xn41) and using ((3), we get

0 < lim sup &(s*a(xn, Xn+1)d(Xn+1, Xn42), d(xn, Xn11)) <0,
n—oo
which is a contradiction. Thus we conclude that r =0, i.e.,
lim d(xn,xn1) =0. (2.3)
n—oo
Now, we shall prove that {x,,} is a Cauchy sequence. Suppose on the contrary that {x,} is not a Cauchy
sequence. Thus there exist € > 0 and the sequences {u(n)}%°_; and {v(n)}°_; of natural numbers such that
(2.4)

u(n) >v(n) >n, d(Xu(n)er(n)) Z €.

Moreover, corresponding to v(n), we can choose the smallest u(n) satisfying (2.4). Then
d(xu(n)flrxv(n)) <e. (2.5)
By using (2.4), (2.5), and the triangle inequality, we get
€ < d(xu(n)rxv(n)) < S[d(xu(n)rxu(n)—l) + d(xu(n)—lrxv(n))] < Sd(xu(n)rxu(n)—l) + s€
Taking the upper and lower limits as n — co and using (2.3), we get
€ < liminf d(xy (n), Xy(n)) < limsup d(xy(n), Xv(n)) < se (2.6)
n—oo n—oo
Again by the triangle inequality, we have
€ < d(Xu(n)/XV(n)) < S[d(xu(n)/xv(n)Jrl) + d(xv(n)Jrl/Xv(n))] (27)
and
d(xu(n)rxv(n)Jrl) < S[d(Xu(n)/Xv(n)) + d(XV(n)IXV(T‘l)+1)]' (28)
So from (2.3), (2.6), (2.7), and (2.8), we have

€ .

— < limsup d(xy (n), Xy(n)+1) < s2e. (2.9)
S n—o0

Again, using above process we get
€ <limsup d(Xy (n)+1,Xv(n)) < s%e. (2.10)
S n—oo
By the triangle inequality
d(Xu(n]/Xv(n)—H) < S[d(xu(n)rxu(n)—i—l) + d(Xu(n)—i—lrxv(n)—i—l)]'
(2.11)

Now using (2.3) and (2.9)
€ .
— < limsup d(Xy(m)4+1, Xv(m)+1)-

n—o0
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By the triangle inequality

d(Xu(n]—i—l/Xv(n]—H) < S[d(xu(n)+1rxv(n)) + d(xv(n)rxv(n]—i—l)]
< Sz[d(xu[n)+1rxu(n)) + d(xu(n)/xv(n))] =+ Sd(xv(n)/xv(n)+1)-
Using (2.6)
lim sup d(Xy (n)+1, Xv(n)+1) < s’e. (2.12)
n—oo
So from (2.11) and (2.12), we have
€ .
— < limsup d(xy(m)4+1, Xv(m)4+1) < s’e. (2.13)
S n—oo
Similarly, we can obtain
€ ..
37 < lﬂlgfd(xu(n)—l—lrxv(n)—!—l) < se. (2.14)
Using (2.13) and (2.14), we have
€ .. . 3
R Hminf d(xyn) 11, % (n)+1) < hgljolip d(Xy(n)+1, Xv(n)+1) < s7€. (2.15)

Now from (2.3), (2.4), and (2.5), we can choose a positive integer n; € IN such that

1 €
Ed(xu(n)/TXu(n)) < % < d(xu(n)/Xv(n))/ vn > ny.

Then by assumption of the theorem for every n > n; and by Lemma 1.5, we have o(x (n), Xy(n)) = 1.
Then from (1.1), we have

0 < C(s* (X (n)s Xv(n)) (X () 11 Xu () 1) MT (X (n), Xu(n)))

4

(2.16)
< MT(Xu(n)/Xv(n)) —S O‘(Xu(n)rxv(n))d(xu(n)—l—lrxv(n)—l—l)/

which is equivalent to

d(xu(n)+1lxv(n)+1) < 34“(Xu(n)/xv(n))d(xu(n)+1lxv(n)+1) < MT(Xu(n)/XV(n))/

where

MT(Xu(n)/XV(n)) = max {d(xu(n)rxv(n))/ d(xu(n)/TXu(n))/ d(xv(n)r Txv(n))/

d(xu(n)/TXV(n)) + d(xv(n)/Txu(n)) }
2s

= maXx {d(xu(n)/Xv(n) )/ d(xu(n)/Xu(n)Jrl)/ d(xv(n)r Xv(n)+1)/

d(xu(n)rxv(n)Jrl) + d(Xv(n)/Xu(n)+l) }
2s '

Taking the upper limit as n — oo on each side of the above inequality and using (2.6), (2.9), and (2.10), we
have
. . s%e +s%e
lim sup Mt (X (n), Xy(n)) = lim sup[max {se, 0,0, 7}] = se.
n—oo n—oo 25
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Therefore from (2.16) taking upper limit and using (2.15), we get

0< thUP ¢ (S4a(xu(n]/xv(n))d(xu(n)+11xv(n)+1)/ MT(Xu(n)/ Xv(n)))
n—oo

< thUP [MT(X‘LL(TL)/XV(TL)) - 540((Xu(n)/Xv(n))d(xu(n)—o—lzxv(n)—o—l)}
n—o0

< lim sup MT(XLL(TL)IXV(TL)) - S4(X(Xu(n)rxv(n)) lim inf d(xu(n)+1rxv(n)+l)

mst n—,oo
€
< se— 5406(Xu(n)rxv(n))(;2) <0,

which is a contradiction. Hence {x,,} is a Cauchy sequence in (X, d). Since X is complete b-metric space,
then there exists x* € X such that

lim x, = x™. (2.17)

n—oo

Now, we show that x* is a fixed point of T. Assume that (iv) holds, then o(xn,x*) > 1. We claim that, for
every n € IN,

1 1
gd(xn, Txn) < d(xn,x") or Zd(TXn' T2xn) < d(Txn, x*). (2.18)

Suppose on the contrary that there exists m € IN, such that

zlsd(xm, Txm) > d(xm,x*) and ;—Sd(Txm, T2xm) = d(Txm, x*). (2.19)
Therefore
2sd(xm, x") < d(xm, Txm) < sld(xm, x*) + d(x*, Txm)].
Which implies that
d(xm, x") < d(x*, Txm). (2.20)

Now, from (2.2) and (2.20) we have

A(Txm, Tm) < d(xm, Txm) < sld(xm, x*) 4+ d(x*, Txm)] < 2sd(x*, Txm ). (2.21)
It follows from (2.19) and (2.21) that

A(Txm, Txm) < d(Txm, TXm).

This is a contradiction. Hence (2.18) holds. If part (i) of (2.18) is true, by generalized Suzuki type o-
Z-contraction with respect to ¢, we have

0 < ¢(s*a(xr, x*)d(Txr, TX*), M1 (Xm0, X)) < M (%m0, X*) — s* (%, x*)d(Txr, TX*),
which is equivalent to
d(Txn, Tx*) < sta(xn, x*)d(Txn, TX*) < My (xn, x*),

where

d(xn, Tx*) + d(x*, Txn) }

MT (XTL/ X*) = max {d(XnIX*)I d(XTLI TXTL)/ d(X*/ TX*)/ 25
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Letting n — oo and by using (2.17), we obtain

lim Mt (xn,x*) = d(x*, Tx). (2.22)

n—oo

By using (2.21), (2.22), (iv), and ((3), we have

0 < ¢(s*a(xn, x*)d(Txn, TX*), M1 (Xn, x*))

lim sup C(s4oc(xn, x)d(Txn, TX*), M1 (X0, x*))

n—oo

< limsup [MT(xn,x*) — s*ot(xm, x*)d(Txn, Tx*)}.

n—oo

<
<

According to property ((3) from Definition 1.6, since the both sequences d(Txn, Tx*), Mt (xn,x*) converge
to the d(x*, Tx*) > 0. By assumption it is clear that

0 < limsup C(s4oc(xn,x*)d(Txn,Tx*), M (xn,x*)) <0,

n—oo

which is a contradiction. Hence x* = Tx*, i.e., x* is a fixed point of T. If part (ii) of (2.18) is true, using a
similar method to the above, we get x* = Tx*. Hence x* is a fixed point of T. O

Now, we prove the uniqueness of the fixed point result. We need the following additional condition.

(A) For all x*,y* € Fix(T), there exists z € X such that «(x*,z) > 1 and «(y*,z) > 1, where Fix(T)
denotes the set of fixed points of T.

Theorem 2.2. By adding condition (A) to the hypothesis of Theorem 2.1, we obtain that x* is the unique fixed point
of T.

Proof. We argue by contradiction, i.e., if x*,y* € X are two fixed points of T, such that x* # y*. Since T is
triangular -admissible and by assumption (A), we have «(x*,y*) > 1, then we have 0 = id(x*, Tx*) <
d(x*,y*) and from (1.1), we obtain

C(s*ax(x*,y*)d(Tx*, Ty*), Mt (x*,y*)) > 0, (2.23)

where

d(x*, Ty*) +d(y*, Tx*) }

M (x',y) = max {d(x",y"), d(x", Tx), dly", Ty"), >

= d(X*,U*)
So, by (2.23), we have

0 < ¢(s*a(x*,y*)d(Tx", Ty*), Mt (x*,y*)) = {(s*a(x*, y*)d(x*, y*), d(x*,y*))
< d(x*,y*) —stal(x*,y*)d(x*,y*) <0,

O

which is a contradiction. Hence, x* = y*.

Example 2.3. Let X ={1,2,3,4,5}and d : X x X — [0, o0) be defined as follows: d(1,2) = d(2,4) = d(3,5) =
1, d(1,5) = 1.02, d(1,3) = d(3,4) = 1.5, d(1,4) = d(2,5) = d(4,5) = 2.4, d(2,3) = 3, d(1,1) = d(2,2) =
d(3,3) =d(4,4) = d(5,5) =0, and d(x,y) = d(y,x) forall x,y € X. As3=4d(2,3) £ d(2,1)+d(1,3) =25,
d is not a metric on X. Clearly (X, d) is a complete b-metric space with parameter s = g. We define
T : X — X such that

T =T2)=T(5)=2, T(3) =5, and T(4) = 1.

Let A = {(1,1), (1,2),(2,1),(2,2),(2,5), (5,2), (5,5), (1,5), (5,1), (3,4), (4,3), (3,3), (4,4)}, and o: X x X —
R by
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x(x,y) = 1, if (x,y) €A,
)= 0, otherwise.

Let ¢ : [0,00) x [0,00) — R defined by ((t,s) = %s —+t for all s,t € [0,00). Now we show that T is
a-admissible. If x,y € {1,2,5}, then «(x,y) = 1 implies that «(Tx, Ty) = «(2,2) = 1. If x,y € {3,4}
then, x(3,4) = 1 implies that «(T3,T4) = «(5,1) = 1. Thus for any x,y € X, «(x,y) = 1 implies that
a(Tx, Ty) = 1. Therefore T is x-admissible. If x,y,z € {1,2,5}, then x(x,y) = 1 and «(y,z) = 1 implies
that «(x,z) = 1. If x,y € {3,4}, then «(x,z) = 1 and «(y,z) = 1 implies that «(x,y) = 1. Thus for any
XY,z € X, a(x,z) =1 and «(z,y) = 1 implies that «(x,y) = 1. Therefore T is triangular x-admissible
mapping. Now we verify the inequality (1.1) for all distinct x,y € X. Note that for all distinct x,y € X
and for s = g the inequalities %d(x, Tx) < d(x,y) and «(x,y) > 1, give

() € {(1,2),21),(2,5),(5,2),(1,5),(5,1), 3,4), (4,3)}.

So, this implies that

4
(s oo )T, Ty), M () = 203 ) b, u)d(T, Ty), M y)

11 6\ 4
_ (2 >
MY = (2) b y)a(Tx Ty) >0,
implies that
6\ 4 11 11 d(x, Ty) +d(y, Tx)
= < = = .
<5> x(x,y)d(Tx, Ty) < 12MT(x,y) 12[max{d(x,y),d(X,TX),d(y/TU)r 12/5 }]

Now, we consider the following cases.
(i) If x,y €{1,2,5}, then
6\4 11
et —0< =
(3) alxy)d(Tx Ty) =0 < ZMr(xy).
(ii) If x =3 and y =4, then

6\4 11
(7) «(3,4)d(T3,T4) = 2.11 < —~M7(3,4) = 2.20.
5 12

4
That is %d(X,TX) < d(x,y) and «(x,y) > 1 implies that C((g) a(x,y)d(Tx, Ty), M1(x,y)) > 0 for all
distinct x,y € X. Moreover, there exists xg € X such that «(xg, Txp) > 1. In fact, for xg = 1, we have
a(1,T1) = «(1,2) = 1. Here all conditions of Theorem 2.1 hold, therefore T has a fixed point. Here, x =2
is a fixed point of T.

Remark 2.4. In b-metric space defined as above, Theorem 3.4 in [6] fails. By choosing x =2 and y = 4, we
have C(gd(TZ, T4),d(2,4)) < 0. Thus it is not a b-simulation function.

Corollary 2.5. Let (X, d) be a complete b-metric space with coefficient s > 1 and o : X x X — R be a function. A
mapping T : X — X be a self mapping and ¢ € Z. Suppose that the following conditions are satisfied:

(i) T is Suzuki type x-Z contraction with respect to (, i.e.,

2-dlx ) < dlxy) = (s ol y)d(Tx, Ty), dlx y) >0,

for all distinct x,y € X;
(ii) T is a triangular o admissible;
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(iii) there exists xo € X such that «(xg, Txg) > 1;
(iv) either T is continuous or for any sequence {xn} in X with «(xn,Xn+1) = 1 for all n € Ng such that
Xn — X € Xasn — oo, we have o(xn,x) > 1 for all n € No.

Then T has a fixed point x* € X.
By setting s = 1 in Theorem 2.1, we deduce the following result.

Corollary 2.6. Let (X,d) be a complete metric space and « : X x X — R be a function. Let T : X — X be a self
mapping and ¢ € Z. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type o-Z-contraction with respect to (, i.e.,
1
Ed(X/TX) < d(X/U) = C((X(X/U)d(TX/TU)/ M(X/U)) 2 0/

for all distinct x,y € X, where

7

d(x, Ty) +d(y, Tx
M(x,y) = max {d(x,y),d(x,TX), d(y, Ty), (x, Ty) 5 y )}
(ii) T is a triangular o admissible;
(iii) there exists xo € X such that x(xg, Txg) = 1;
(iv) either T is continuous or for any sequence {xn} in X with &(Xn,Xn+1) = 1 for all n € Nq such that
Xn — X € Xasn — oo, we have o(xn,x) > 1 for all n € No.

Then T has a fixed point x* € X.

Corollary 2.7. Adding condition (A) to the hypotheses of Corollary 2.5 (resp. Corollary 2.6), we obtain that x* is
the unique fixed point of T.

Acknowledgment

Authors are indebted to the referee for his careful reading of the manuscript and valuable suggestions.

References

[1] H. Aydi, M. Jellali, E. Karapinar, On fixed point results for a-implicit contractions in quasi-metric spaces and conse-
quences, Nonlinear Anal. Model. Control, 21 (2016), 40-56. 1

[2] G. V. R. Babu, D. T. Mosissa, Fixed point in b-metric space via simulation function, Novi Sad ]. Math., 47 (2017),
133-147. 1

[3] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric space, Int. J. Mod. Math., 4 (2009),
285-301. 1, 1.2

[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1, 1.1

[5] S.Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998),
263-276. 1

[6] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions,
Iran. J. Math. Sci. Inform., 11 (2016), 123-136. 2.4

[7] E.Karapinar, P. Kumam, P. Salimi, On «-\p-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013),
12 pages. 1,1.4,1.5

[8] E Khojasteh, S. Shukla, S. Radenovi¢, A new approach to the study of fixed point theory for simulation functions, Filomat,
29 (2015), 1189-1194. 1, 1.6,1.7,1.8

[9] P. Kumam, D. Gopal, L. Budhia, A new fixed point theorem under Suzuki type Z-contraction mappings, ]. Math. Anal.,
8 (2017), 113-119. 1, 1.9, 1.10, 1.11

[10] B. Mohammadji, S. Rezapour, N. Shahzad, Some results on fixed points of a-\p-Cirié generalized multifunctions, Fixed
Point Theory Appl., 2013 (2013), 10 pages. 1
[11] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, An. Univ. Vest Timi. Ser. Mat.-Inform.,

48 (2010), 125-137. 1


https://doi.org/10.15388/NA.2016.1.3
https://doi.org/10.15388/NA.2016.1.3
https://www.dmi.uns.ac.rs/nsjom/Papers/47_2/NSJOM_47_2_133_147.pdf
https://www.dmi.uns.ac.rs/nsjom/Papers/47_2/NSJOM_47_2_133_147.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strict+fixed+point+theorems+for+multivalued+operators+in+%24b%24-metric+space&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strict+fixed+point+theorems+for+multivalued+operators+in+%24b%24-metric+space&btnG=
https://dml.cz/bitstream/handle/10338.dmlcz/120469/ActaOstrav_01-1993-1_2.pdf
https://www.scienceopen.com/document?vid=3b35946f-c105-45a6-b686-62abb75f7de0
https://www.scienceopen.com/document?vid=3b35946f-c105-45a6-b686-62abb75f7de0
https://doi.org/10.7508/ijmsi.2016.01.011
https://doi.org/10.7508/ijmsi.2016.01.011
https://doi.org/10.1186/1687-1812-2013-94
https://doi.org/10.1186/1687-1812-2013-94
https://www.jstor.org/stable/24898200
https://www.jstor.org/stable/24898200
http://www.ilirias.com/jma/repository/docs/JMA8-1-8.pdf
http://www.ilirias.com/jma/repository/docs/JMA8-1-8.pdf
https://doi.org/10.1186/1687-1812-2013-24
https://doi.org/10.1186/1687-1812-2013-24
https://www.jstor.org/stable/43996865
https://www.jstor.org/stable/43996865

S. Antal, U. C. Gairola, J. Nonlinear Sci. Appl., 13 (2020), 212-222 222

[12] A.Padcharoen, P. Kumam, P. Saipara, P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces,
Kragujevac J. Math., 42 (2018), 419-430. 1, 1.12

[13] J.R. Roshan, V. Parvaneh, Z. Kadelberg, Common fixed point theorems for weakly isotone increasing mappings in ordered
b-metric spaces, ]. Nonlinear Sci. Appl., 7 (2014), 229-245. 1

[14] J.R.Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized (\p, $)s-
contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. 1

[15] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for o —\p-contractive type mappings, Nonlinear Anal., 75 (2012),
2154-2165. 1, 1.3


https://scindeks-clanci.ceon.rs/data/pdf/1450-9628/2018/1450-96281803419P.pdf
https://scindeks-clanci.ceon.rs/data/pdf/1450-9628/2018/1450-96281803419P.pdf
https://doi.org/10.22436/jnsa.007.04.01
https://doi.org/10.22436/jnsa.007.04.01
https://doi.org/10.1186/1687-1812-2013-159
https://doi.org/10.1186/1687-1812-2013-159
https://doi.org/10.1016/j.na.2011.10.014
https://doi.org/10.1016/j.na.2011.10.014

	Introduction and Preliminaries
	Main result

