Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 13 (2020), 212–222

Research Article

ISSN: 2008-1898

Journal of Nonlinear Sciences and Applications

Journal Homepage: www.isr-publications.com/jnsa

Generalized Suzuki type α - α -contraction in b-metric space

Swati Antal*, U. C. Gairola

Department of Mathematics, H.N.B. Garhwal University, BGR Campus, Pauri Garhwal-246001, Uttarakhand, India.

Abstract

In this paper, we introduce the concept of generalized Suzuki type α - α -contraction concerning a simulation function ζ in b-metric space and prove the existence of fixed point results for this contraction. Our result extend the fixed point result of [A. Padcharoen, P. Kumam, P. Saipara, P. Chaipunya, Kragujevac J. Math., **42** (2018), 419–430].

Keywords: Simulation function, triangular α -admissible mapping with respect to ζ , b-metric space, generalized Suzuki type α -2-contraction mapping.

2010 MSC: 54H25, 47H10.

©2020 All rights reserved.

1. Introduction and Preliminaries

In 1993, Czerwik [4] generalized the concept of metric space by introducing a real number $s \ge 1$ in the triangle inequality of metric space and give the notion of b-metric spaces. Since then several papers have been published on the fixed point theory of various classes of single-valued and multi-valued operators in b-metric spaces (see, [3, 5, 11, 14]).

Definition 1.1 ([4]). Let X be a non-empty set and $s \ge 1$ be a given real number. A function $d : X \times X \rightarrow [0, \infty)$ is said to be a b-metric space if, for all $x, y, z \in X$, the following conditions are satisfied:

- (i) d(x, y) = 0 iff x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x,z) \le s[d(x,y) + d(y,z)].$

The pair (X, d) is called a b-metric space.

It should be noted that, every metric space is a b-metric space with s = 1 and hence the class of b-metric spaces is larger than the class of metric spaces. But a metric space does not need to be b-metric space (see [13, example 1.4]).

*Corresponding author

Email addresses: antalswati110gmail.com (Swati Antal), ucgairola@rediffmail.com (U. C. Gairola)

doi: 10.22436/jnsa.013.04.06

Received: 2019-08-23 Revised: 2020-01-11 Accepted: 2020-01-16

Definition 1.2 ([3]). Let (X, d) be a b-metric space.

- (i) A sequence $\{x_n\}$ in X is called b-convergent if and only if there exists $x \in X$ such that $d(x_n, x) \to 0$, as $n \to \infty$. In this case, we write $\lim_{n\to\infty} x_n \to x$.
- (ii) $\{x_n\}$ in X is said to be b-Cauchy if and only if $d(x_n, x_m) \to 0$, as $n, m \to \infty$.
- (iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence $\{x_n\}$ in X is convergent.

In 2012, Samet et al. [15] introduced the concept of α -admissible mapping.

Definition 1.3 ([15]). Let T be a self mapping on X and $\alpha : X \times X \to [0, \infty)$ be a function. We say that T is α -admissible, if $x, y \in X$,

$$\alpha(\mathbf{x},\mathbf{y}) \ge 1 \Longrightarrow \alpha(\mathsf{T}\mathbf{x},\mathsf{T}\mathbf{y}) \ge 1.$$

The concept of α -admissible mappings has been used by several researchers (see for example [1, 10]). Later, Karapinar et al. [7] introduced the notion of triangular α -admissible mappings.

Definition 1.4 ([7]). Let $T : X \to X$ and $\alpha : X \times X \to \mathbb{R}$. Then T is said to be triangular α -admissible if

(T₁) T is α -admissible;

 $(\mathsf{T}_2) \ \alpha(x,y) \ge 1 \text{ and } \alpha(y,z) \ge 1 \Longrightarrow \alpha(x,z) \ge 1, x, y, z \in X.$

Lemma 1.5 ([7]). Let T be a triangular α -admissible mapping. Assume that there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Define sequence $\{x_n\}$ by $x_n = T^n x_0$. Then $\alpha(x_m, x_n) \ge 1$ for all $m, n \in \mathbb{N}$ with m < n.

Recently, in 2015, Khojasteh et al. [8] introduced the notion of simulation function with a view to consider a new class of contractions, called \mathcal{Z} -contraction with respect to a simulation function. Such family generalized the Banach contraction and unified some known nonlinear contractions.

Definition 1.6 ([8]). A simulation function is a mapping $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$, satisfying the following conditions:

- (i) $(\zeta_1) \zeta(0,0) = 0;$
- (ii) $(\zeta_2) \zeta(t, s) < s t$, for all s, t > 0;

(iii) (ζ_3) if { t_n }, { s_n } are sequences in (0, ∞) such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n > 0$,

then $\limsup_{n\to\infty} \zeta(t_n,s_n) < 0$. We denote the set of all simulation functions by \mathbb{Z} .

Example 1.7 ([8]). Let $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$, be defined by

- (i) $\zeta(t,s) = \psi(s) \varphi(t)$ for all $t, s \in [0,\infty)$, where $\varphi, \psi : [0,\infty) \to [0,\infty)$ are two continuous functions such that $\psi(t) = \varphi(t) = 0$ if and only if t = 0 and $\psi(t) < t \leq \varphi(t)$ for all t > 0;
- (ii) $\zeta(t,s) = s \frac{f(t,s)}{g(t,s)}t$ for all $t,s \in [0,\infty)$, where $f,g : [0,\infty) \to [0,\infty)$ are two continuous functions with respect to each variable such that f(t,s) > g(t,s) for all t,s > 0;
- (iii) $\zeta(t,s) = s \varphi(s) t$ for all $t, s \in [0,\infty)$, where $\varphi : [0,\infty) \to [0,\infty)$ is a continuous functions such that $\varphi(t) = 0$ if and only if t = 0.

These are simulation functions.

Definition 1.8 ([8]). Let (X, d) be a metric space, $T : X \to X$ be a mapping and $\zeta \in \mathbb{Z}$. Then T is called a \mathbb{Z} -contraction with respect to ζ if the following condition is satisfied

$$\zeta(d(\mathsf{T}\mathsf{x},\mathsf{T}\mathsf{y}),d(\mathsf{x},\mathsf{y})) \geqslant 0,$$

for all $x, y \in X$.

Later, in 2017, Kumam et al. [9] introduce the notion of Suzuki type 2-contraction as follows.

Definition 1.9 ([9]). Let (X, d) be a metric space, $T : X \to X$ be a mapping and $\zeta \in \mathbb{Z}$. Then T is called a Suzuki type \mathbb{Z} -contraction with respect to ζ , if the following condition is satisfied

$$\frac{1}{2}d(x,Tx) < d(x,y) \Rightarrow \zeta(d(Tx,Ty),d(x,y)) \ge 0$$

for all $x, y \in X$, with $x \neq y$.

Remark 1.10 ([9]). It is clear from the definition of simulation function that $\zeta(t,s) < s - t \leq 0$, for all $t \geq s > 0$. Therefore if T is a Suzuki type \mathfrak{Z} -contraction with respect to ζ , then

$$\frac{1}{2}d(x,Tx) < d(x,y) \Rightarrow d(Tx,Ty) < d(x,y)$$

for all distinct $x, y \in X$.

Theorem 1.11 ([9]). Let (X, d) be a metric space and $T : X \to X$ be a Suzuki type \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$. Then T has at most one fixed point.

In 2018, Padcharoen et al. [12] introduced the generalized Suzuki type \mathcal{Z} -contraction in metric space as follows.

Definition 1.12 ([12]). Let (X, d) be a metric space, $T : X \to X$ a mapping and $\zeta \in \mathbb{Z}$. Then T is called a generalized Suzuki type \mathbb{Z} -contraction with respect to ζ , if the following condition is satisfied

$$\frac{1}{2}d(x,Tx) < d(x,y) \Rightarrow \zeta(d(Tx,Ty),M(x,y)) \ge 0,$$

for all distinct $x, y \in X$, where

$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2}\right\}$$

Motivated and inspired by Definition 1.12 and the work of Babu et al. [2], we introduced the definition of generalized Suzuki type α - α -contraction with respect to ζ in b-metric space.

Definition 1.13. Let (X, d) be a b-metric space with coefficient $s \ge 1$ and $\alpha : X \times X \to \mathbb{R}$ be a function. A mapping $T : X \to X$ is said to be a generalized Suzuki type α - \mathcal{Z} contraction with respect to ζ if there exists a simulation function $\zeta \in \mathcal{Z}$ such that

$$\frac{1}{2s}d(x,Tx) < d(x,y) \Rightarrow \zeta(s^4\alpha(x,y)d(Tx,Ty), M_T(x,y)) \ge 0,$$
(1.1)

for all distinct $x, y \in X$, where

$$M_{\mathsf{T}}(x,y) = \max\Big\{d(x,y), d(x,\mathsf{T}x), d(y,\mathsf{T}y), \frac{d(x,\mathsf{T}y) + d(y,\mathsf{T}x)}{2s}\Big\}.$$

Remark 1.14. It is clear from the definition of simulation function that $\zeta(t, s) < s - t \leq 0$, for all $t \geq s > 0$. Therefore if T is a generalized Suzuki type α - \mathcal{Z} -contraction with respect to ζ , then

$$\frac{1}{2s}d(x,Tx) < d(x,y) \Rightarrow s^{4}\alpha(x,y)d(Tx,Ty) < M(x,y)),$$

for all distinct $x, y \in X$.

2. Main result

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient $s \ge 1$ and $\alpha : X \times X \to \mathbb{R}$ be a function. Let $T : X \to X$ be a self mapping and $\zeta \in \mathbb{Z}$. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type α -Z-contraction with respect to ζ ;

- (ii) T is a triangular α admissible;
- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv) either T is continuous or for any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}_0$ such that $x_n \to x \in X$ as $n \to \infty$, we have $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N}_0$.

Then T *has a fixed point* $x^* \in X$ *.*

Proof. By assumption (iii), there exists a point $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Define a sequence $\{x_n\}$ in X by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}_0$ (where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, \mathbb{N} = set of natural numbers). If there exists an n_0 such that $x_{n_0+1} = x_{n_0}$ for some $n_0 \in \mathbb{N}_0$, then x_{n_0} is a fixed point of T, which completes the proof. Therefore we assume that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N}_0$. Hence we have

$$\frac{1}{2s}d(x_n,\mathsf{T} x_n) < d(x_n,x_{n+1}) \ \text{ for all } \ n\in\mathbb{N}_0.$$

The mapping T is triangular α -admissible by Lemma 1.5, we have

$$\alpha(\mathbf{x}_n, \mathbf{x}_{n+1}) \ge 1$$
, for all $n \in \mathbb{N}_0$.

Then by (1.1), we have

$$0 \leq \zeta(s^4 \alpha(x_n, x_{n+1}) d(Tx_n, Tx_{n+1}), M_T(x_n, x_{n+1}) < M_T(x_n, x_{n+1}) - s^4 \alpha(x_n, x_{n+1}) d(Tx_n, Tx_{n+1}) = 0$$

Consequently, we drive that

$$d(x_{n+1}, x_{n+2}) \leq s^4 \alpha(x_n, x_{n+1}) d(Tx_n, Tx_{n+1}) < M_T(x_n, x_{n+1}).$$

Thus we have

$$d(x_{n+1}, x_{n+2}) < M_{\mathsf{T}}(x_n, x_{n+1}), \tag{2.1}$$

where

$$\begin{split} \mathsf{M}_{\mathsf{T}}(\mathbf{x}_{n},\mathbf{x}_{n+1}) &= \max\left\{\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+1}),\mathsf{d}(\mathbf{x}_{n},\mathsf{T}\mathbf{x}_{n}),\mathsf{d}(\mathbf{x}_{n+1},\mathsf{T}\mathbf{x}_{n+1}),\frac{\mathsf{d}(\mathbf{x}_{n},\mathsf{T}\mathbf{x}_{n+1})+\mathsf{d}(\mathbf{x}_{n+1},\mathsf{T}\mathbf{x}_{n})}{2s}\right\} \\ &= \max\left\{\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+1}),\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+1}),\mathsf{d}(\mathbf{x}_{n+1},\mathbf{x}_{n+2}),\frac{\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+2})+\mathsf{d}(\mathbf{x}_{n+1},\mathbf{x}_{n+1})}{2s}\right\} \\ &= \max\left\{\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+1}),\mathsf{d}(\mathbf{x}_{n+1},\mathbf{x}_{n+2}),\frac{\mathsf{d}(\mathbf{x}_{n},\mathbf{x}_{n+2})}{2s}\right\}. \end{split}$$

Since

$$\frac{d(x_n, x_{n+2})}{2s} \leqslant \frac{s[d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2})]}{2s} \leqslant \max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\},\$$

then we get

$$M_{T}(x_{n}, x_{n+1}) \leq \max\{d(x_{n}, x_{n+1}), d(x_{n+1}, x_{n+2})\}$$

If $d(x_n, x_{n+1}) < d(x_{n+1}, x_{n+2})$, then

$$\max\{d(x_n, x_{n+1}), d(x_{n+1}, x_{n+2})\} = d(x_{n+1}, x_{n+2}).$$

Then (2.1) becomes

$$d(x_{n+1}, x_{n+2}) < d(x_{n+1}, x_{n+2}),$$

which is a contradiction. Thus we conclude that

$$d(x_{n+1}, x_{n+2}) < d(x_n, x_{n+1}).$$
(2.2)

Which implies that $d(x_n, x_{n+1})$ is monotonically decreasing sequence of non negative real numbers. Thus there exists $r \ge 0$, such that $\lim_{n\to\infty} d(x_n, x_{n+1}) = r$. We shall prove that r = 0. Suppose on the contrary that r > 0. Letting $t_n = \alpha(x_n, x_{n+1})d(x_{n+1}, x_{n+2})$ and $s_n = d(x_n, x_{n+1})$ and using (ζ_3) , we get

$$0 \leq \limsup_{n \to \infty} \zeta(s^4 \alpha(x_n, x_{n+1}) d(x_{n+1}, x_{n+2}), d(x_n, x_{n+1})) < 0,$$

which is a contradiction. Thus we conclude that r = 0, i.e.,

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
 (2.3)

Now, we shall prove that $\{x_n\}$ is a Cauchy sequence. Suppose on the contrary that $\{x_n\}$ is not a Cauchy sequence. Thus there exist $\epsilon > 0$ and the sequences $\{u(n)\}_{n=1}^{\infty}$ and $\{v(n)\}_{n=1}^{\infty}$ of natural numbers such that

$$\mathfrak{u}(\mathfrak{n}) > \mathfrak{v}(\mathfrak{n}) > \mathfrak{n}, \ \mathfrak{d}(\mathfrak{x}_{\mathfrak{u}(\mathfrak{n})}, \mathfrak{x}_{\mathfrak{v}(\mathfrak{n})}) \geqslant \varepsilon.$$

$$(2.4)$$

Moreover, corresponding to v(n), we can choose the smallest u(n) satisfying (2.4). Then

$$d(\mathbf{x}_{u(n)-1},\mathbf{x}_{v(n)}) < \epsilon.$$
(2.5)

By using (2.4), (2.5), and the triangle inequality, we get

$$\epsilon \leq d(x_{u(n)}, x_{v(n)}) \leq s[d(x_{u(n)}, x_{u(n)-1}) + d(x_{u(n)-1}, x_{v(n)})] \leq sd(x_{u(n)}, x_{u(n)-1}) + s\epsilon.$$

Taking the upper and lower limits as $n \to \infty$ and using (2.3), we get

$$\epsilon \leq \liminf_{n \to \infty} d(x_{u(n)}, x_{v(n)}) \leq \limsup_{n \to \infty} d(x_{u(n)}, x_{v(n)}) \leq s\epsilon.$$
(2.6)

Again by the triangle inequality, we have

$$\epsilon \leq d(x_{u(n)}, x_{v(n)}) \leq s[d(x_{u(n)}, x_{v(n)+1}) + d(x_{v(n)+1}, x_{v(n)})]$$
(2.7)

and

$$d(x_{u(n)}, x_{v(n)+1}) \leq s[d(x_{u(n)}, x_{v(n)}) + d(x_{v(n)}, x_{v(n)+1})].$$
(2.8)

So from (2.3), (2.6), (2.7), and (2.8), we have

$$\frac{\epsilon}{s} \leq \limsup_{n \to \infty} d(x_{u(n)}, x_{\nu(n)+1}) \leq s^2 \epsilon.$$
(2.9)

Again, using above process we get

$$\frac{\epsilon}{s} \leq \limsup_{n \to \infty} d(x_{u(n)+1}, x_{v(n)}) \leq s^2 \epsilon.$$
(2.10)

By the triangle inequality

$$d(x_{u(n)}, x_{v(n)+1}) \leq s[d(x_{u(n)}, x_{u(n)+1}) + d(x_{u(n)+1}, x_{v(n)+1})].$$

Now using (2.3) and (2.9)

$$\frac{\epsilon}{s^2} \leq \limsup_{n \to \infty} d(x_{u(n)+1}, x_{v(n)+1}).$$
(2.11)

By the triangle inequality

$$\begin{aligned} d(x_{u(n)+1}, x_{v(n)+1}) &\leq s[d(x_{u(n)+1}, x_{v(n)}) + d(x_{v(n)}, x_{v(n)+1})] \\ &\leq s^2[d(x_{u(n)+1}, x_{u(n)}) + d(x_{u(n)}, x_{v(n)})] + sd(x_{v(n)}, x_{v(n)+1}). \end{aligned}$$

Using (2.6)

$$\limsup_{n \to \infty} d(x_{u(n)+1}, x_{v(n)+1}) \leqslant s^3 \epsilon.$$
(2.12)

So from (2.11) and (2.12), we have

$$\frac{\epsilon}{s^2} \leq \limsup_{n \to \infty} d(x_{u(n)+1}, x_{\nu(n)+1}) \leq s^3 \epsilon.$$
(2.13)

Similarly, we can obtain

$$\frac{\epsilon}{s^2} \leq \liminf_{n \to \infty} d(x_{u(n)+1}, x_{v(n)+1}) \leq s^3 \epsilon.$$
(2.14)

Using (2.13) and (2.14), we have

$$\frac{\epsilon}{s^2} \leqslant \liminf_{n \to \infty} d(x_{u(n)+1}, x_{\nu(n)+1}) \leqslant \limsup_{n \to \infty} d(x_{u(n)+1}, x_{\nu(n)+1}) \leqslant s^3 \epsilon.$$
(2.15)

Now from (2.3), (2.4), and (2.5), we can choose a positive integer $n_1 \in \mathbb{N}$ such that

.

$$\frac{1}{2s}d(x_{u(n)},Tx_{u(n)}) < \frac{\varepsilon}{2s} < d(x_{u(n)},x_{\nu(n)}), \quad \forall n \ge n_1.$$

Then by assumption of the theorem for every $n \ge n_1$ and by Lemma 1.5, we have $\alpha(x_{u(n)}, x_{v(n)}) \ge 1$. Then from (1.1), we have

$$0 \leq \zeta(s^{4}\alpha(x_{u(n)}, x_{v(n)})d(x_{u(n)+1}, x_{v(n)+1}), M_{T}(x_{u(n)}, x_{v(n)})) < M_{T}(x_{u(n)}, x_{v(n)}) - s^{4}\alpha(x_{u(n)}, x_{v(n)})d(x_{u(n)+1}, x_{v(n)+1}),$$
(2.16)

which is equivalent to

$$d(x_{u(n)+1}, x_{v(n)+1}) \leq s^4 \alpha(x_{u(n)}, x_{v(n)}) d(x_{u(n)+1}, x_{v(n)+1}) < M_T(x_{u(n)}, x_{v(n)}),$$

where

$$\begin{split} M_{T}(x_{u(n)}, x_{v(n)}) &= \max \left\{ d(x_{u(n)}, x_{v(n)}), d(x_{u(n)}, Tx_{u(n)}), d(x_{v(n)}, Tx_{v(n)}), \\ &\quad \frac{d(x_{u(n)}, Tx_{v(n)}) + d(x_{v(n)}, Tx_{u(n)})}{2s} \right\} \\ &= \max \left\{ d(x_{u(n)}, x_{v(n)}), d(x_{u(n)}, x_{u(n)+1}), d(x_{v(n)}, x_{v(n)+1}), \\ &\quad \frac{d(x_{u(n)}, x_{v(n)+1}) + d(x_{v(n)}, x_{u(n)+1})}{2s} \right\}. \end{split}$$

Taking the upper limit as $n \to \infty$ on each side of the above inequality and using (2.6), (2.9), and (2.10), we have

$$\limsup_{n\to\infty} M_T(x_{u(n)}, x_{v(n)}) = \limsup_{n\to\infty} [\max\left\{s\varepsilon, 0, 0, \frac{s^2\varepsilon + s^2\varepsilon}{2s}\right\}] = s\varepsilon.$$

Therefore from (2.16) taking upper limit and using (2.15), we get

$$\begin{split} 0 &\leq \limsup_{n \to \infty} \zeta \left(s^4 \alpha(x_{u(n)}, x_{v(n)}) d(x_{u(n)+1}, x_{v(n)+1}), M_T(x_{u(n)}, x_{v(n)}) \right) \\ &< \limsup_{n \to \infty} \left[M_T(x_{u(n)}, x_{v(n)}) - s^4 \alpha(x_{u(n)}, x_{v(n)}) d(x_{u(n)+1}, x_{v(n)+1}) \right] \\ &\leq \limsup_{n \to \infty} M_T(x_{u(n)}, x_{v(n)}) - s^4 \alpha(x_{u(n)}, x_{v(n)}) \liminf_{n \to \infty} d(x_{u(n)+1}, x_{v(n)+1}) \\ &\leq s \varepsilon - s^4 \alpha(x_{u(n)}, x_{v(n)}) \left(\frac{\varepsilon}{s^2}\right) < 0, \end{split}$$

which is a contradiction. Hence $\{x_n\}$ is a Cauchy sequence in (X, d). Since X is complete b-metric space, then there exists $x^* \in X$ such that

$$\lim_{n \to \infty} x_n = x^*. \tag{2.17}$$

Now, we show that x^* is a fixed point of T. Assume that (iv) holds, then $\alpha(x_n, x^*) \ge 1$. We claim that, for every $n \in \mathbb{N}$,

$$\frac{1}{2s}d(x_n, Tx_n) < d(x_n, x^*) \text{ or } \frac{1}{2s}d(Tx_n, T^2x_n) < d(Tx_n, x^*).$$
(2.18)

Suppose on the contrary that there exists $m \in \mathbb{N}$, such that

$$\frac{1}{2s}d(x_{m}, Tx_{m}) \ge d(x_{m}, x^{*}) \text{ and } \frac{1}{2s}d(Tx_{m}, T^{2}x_{m}) \ge d(Tx_{m}, x^{*}).$$
(2.19)

Therefore

 $2sd(x_m,x^*)\leqslant d(x_m,\mathsf{T} x_m)\leqslant s[d(x_m,x^*)+d(x^*,\mathsf{T} x_m)].$

Which implies that

$$d(x_m, x^*) \leqslant d(x^*, \mathsf{T} x_m). \tag{2.20}$$

Now, from (2.2) and (2.20) we have

$$d(Tx_{m}, T^{2}x_{m}) < d(x_{m}, Tx_{m}) \leq s[d(x_{m}, x^{*}) + d(x^{*}, Tx_{m})] \leq 2sd(x^{*}, Tx_{m}).$$
(2.21)

It follows from (2.19) and (2.21) that

$$d(\mathsf{T}\mathsf{x}_{\mathfrak{m}},\mathsf{T}^{2}\mathsf{x}_{\mathfrak{m}}) < d(\mathsf{T}\mathsf{x}_{\mathfrak{m}},\mathsf{T}^{2}\mathsf{x}_{\mathfrak{m}}).$$

This is a contradiction. Hence (2.18) holds. If part (i) of (2.18) is true, by generalized Suzuki type α - α -contraction with respect to ζ , we have

$$0 \leq \zeta(s^{4}\alpha(x_{n}, x^{*})d(Tx_{n}, Tx^{*}), M_{T}(x_{n}, x^{*})) < M_{T}(x_{n}, x^{*}) - s^{4}\alpha(x_{n}, x^{*})d(Tx_{n}, Tx^{*}),$$

which is equivalent to

$$d(\mathsf{T} x_n, \mathsf{T} x^*) \leqslant s^4 \alpha(x_n, x^*) d(\mathsf{T} x_n, \mathsf{T} x^*) < \mathsf{M}_\mathsf{T}(x_n, x^*),$$

where

$$M_{T}(x_{n}, x^{*}) = \max \Big\{ d(x_{n}, x^{*}), d(x_{n}, Tx_{n}), d(x^{*}, Tx^{*}), \frac{d(x_{n}, Tx^{*}) + d(x^{*}, Tx_{n})}{2s} \Big\}.$$

Letting $n \to \infty$ and by using (2.17), we obtain

$$\lim_{n \to \infty} M_{\mathsf{T}}(x_n, x^*) = d(x^*, \mathsf{T} x^*). \tag{2.22}$$

By using (2.21), (2.22), (iv), and (ζ_3) , we have

$$\begin{split} & 0 \leqslant \zeta \big(s^4 \alpha(x_n, x^*) d(\mathsf{T} x_n, \mathsf{T} x^*), \mathsf{M}_\mathsf{T}(x_n, x^*) \big) \\ & \leqslant \limsup_{n \to \infty} \zeta \big(s^4 \alpha(x_n, x^*) d(\mathsf{T} x_n, \mathsf{T} x^*), \mathsf{M}_\mathsf{T}(x_n, x^*) \big) \\ & \leqslant \limsup_{n \to \infty} \Big[\mathsf{M}_\mathsf{T}(x_n, x^*) - s^4 \alpha(x_n, x^*) d(\mathsf{T} x_n, \mathsf{T} x^*) \Big]. \end{split}$$

According to property (ζ_3) from Definition 1.6, since the both sequences $d(Tx_n, Tx^*)$, $M_T(x_n, x^*)$ converge to the $d(x^*, Tx^*) > 0$. By assumption it is clear that

$$0 \leq \limsup_{n \to \infty} \zeta \left(s^4 \alpha(x_n, x^*) d(\mathsf{T} x_n, \mathsf{T} x^*), \mathsf{M}_{\mathsf{T}}(x_n, x^*) \right) < 0,$$

which is a contradiction. Hence $x^* = Tx^*$, i.e., x^* is a fixed point of T. If part (ii) of (2.18) is true, using a similar method to the above, we get $x^* = Tx^*$. Hence x^* is a fixed point of T.

Now, we prove the uniqueness of the fixed point result. We need the following additional condition.

(A) For all $x^*, y^* \in Fix(T)$, there exists $z \in X$ such that $\alpha(x^*, z) \ge 1$ and $\alpha(y^*, z) \ge 1$, where Fix(T) denotes the set of fixed points of T.

Theorem 2.2. *By adding condition* (A) *to the hypothesis of Theorem* 2.1*, we obtain that* x^* *is the unique fixed point of T.*

Proof. We argue by contradiction, i.e., if $x^*, y^* \in X$ are two fixed points of T, such that $x^* \neq y^*$. Since T is triangular α -admissible and by assumption (A), we have $\alpha(x^*, y^*) \ge 1$, then we have $0 = \frac{1}{2s} d(x^*, Tx^*) < d(x^*, y^*)$ and from (1.1), we obtain

$$\zeta(s^{4}\alpha(x^{*}, y^{*})d(Tx^{*}, Ty^{*}), M_{T}(x^{*}, y^{*})) \ge 0,$$
(2.23)

where

$$M_{\mathsf{T}}(x^*, y^*) = \max\left\{d(x^*, y^*), d(x^*, \mathsf{T}x^*), d(y^*, \mathsf{T}y^*), \frac{d(x^*, \mathsf{T}y^*) + d(y^*, \mathsf{T}x^*)}{2s}\right\} = d(x^*, y^*).$$

So, by (2.23), we have

which is a contradiction. Hence, $x^* = y^*$.

Example 2.3. Let $X = \{1, 2, 3, 4, 5\}$ and $d: X \times X \rightarrow [0, \infty)$ be defined as follows: d(1, 2) = d(2, 4) = d(3, 5) = 1, d(1, 5) = 1.02, d(1, 3) = d(3, 4) = 1.5, d(1, 4) = d(2, 5) = d(4, 5) = 2.4, d(2, 3) = 3, d(1, 1) = d(2, 2) = d(3, 3) = d(4, 4) = d(5, 5) = 0, and d(x, y) = d(y, x) for all $x, y \in X$. As $3 = d(2, 3) \nleq d(2, 1) + d(1, 3) = 2.5$, d is not a metric on X. Clearly (X, d) is a complete b-metric space with parameter $s = \frac{6}{5}$. We define $T: X \rightarrow X$ such that

$$T(1) = T(2) = T(5) = 2$$
, $T(3) = 5$, and $T(4) = 1$.

Let $A = \{(1,1), (1,2), (2,1), (2,2), (2,5), (5,2), (5,5), (1,5), (5,1), (3,4), (4,3), (3,3), (4,4)\}$, and $\alpha : X \times X \to \mathbb{R}$ by

$$\alpha(x,y) = \begin{cases} 1, & \text{if } (x,y) \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Let $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ defined by $\zeta(t, s) = \frac{11}{12}s - t$ for all $s, t \in [0, \infty)$. Now we show that T is α -admissible. If $x, y \in \{1, 2, 5\}$, then $\alpha(x, y) = 1$ implies that $\alpha(Tx, Ty) = \alpha(2, 2) = 1$. If $x, y \in \{3, 4\}$ then, $\alpha(3, 4) = 1$ implies that $\alpha(T3, T4) = \alpha(5, 1) = 1$. Thus for any $x, y \in X$, $\alpha(x, y) = 1$ implies that $\alpha(Tx, Ty) = 1$. Therefore T is α -admissible. If $x, y, z \in \{1, 2, 5\}$, then $\alpha(x, y) = 1$ and $\alpha(y, z) = 1$ implies that $\alpha(x, z) = 1$. If $x, y \in \{3, 4\}$, then $\alpha(x, z) = 1$ and $\alpha(x, z) = 1$ and $\alpha(y, z) = 1$ implies that $\alpha(x, z) = 1$. If $x, y \in \{3, 4\}$, then $\alpha(x, z) = 1$ and $\alpha(y, z) = 1$ implies that $\alpha(x, y) = 1$. Thus for any $x, y, z \in X$, $\alpha(x, z) = 1$ and $\alpha(z, y) = 1$ implies that $\alpha(x, y) = 1$. Therefore T is triangular α -admissible mapping. Now we verify the inequality (1.1) for all distinct $x, y \in X$. Note that for all distinct $x, y \in X$ and for $s = \frac{6}{5}$ the inequalities $\frac{5}{12}d(x, Tx) < d(x, y)$ and $\alpha(x, y) \ge 1$, give

$$(x,y) \in \{(1,2), (2,1), (2,5), (5,2), (1,5), (5,1), (3,4), (4,3)\}.$$

So, this implies that

$$\begin{aligned} \zeta(s^4 \alpha(\mathbf{x}, \mathbf{y}) \mathbf{d}(\mathsf{T}\mathbf{x}, \mathsf{T}\mathbf{y}), \mathsf{M}_\mathsf{T}(\mathbf{x}, \mathbf{y})) &= \zeta(\left(\frac{6}{5}\right)^4 \alpha(\mathbf{x}, \mathbf{y}) \mathbf{d}(\mathsf{T}\mathbf{x}, \mathsf{T}\mathbf{y}), \mathsf{M}_\mathsf{T}(\mathbf{x}, \mathbf{y})) \\ &= \frac{11}{12} \mathsf{M}_\mathsf{T}(\mathbf{x}, \mathbf{y}) - \left(\frac{6}{5}\right)^4 \alpha(\mathbf{x}, \mathbf{y}) \mathbf{d}(\mathsf{T}\mathbf{x}, \mathsf{T}\mathbf{y}) \geqslant 0, \end{aligned}$$

implies that

$$\left(\frac{6}{5}\right)^{4} \alpha(x, y) d(\mathsf{T}x, \mathsf{T}y) \leqslant \frac{11}{12} \mathsf{M}_{\mathsf{T}}(x, y) = \frac{11}{12} \left[\max\left\{ d(x, y), d(x, \mathsf{T}x), d(y, \mathsf{T}y), \frac{d(x, \mathsf{T}y) + d(y, \mathsf{T}x)}{12/5} \right\} \right].$$

Now, we consider the following cases.

(i) If $x, y \in \{1, 2, 5\}$, then

$$\left(\frac{6}{5}\right)^4 \alpha(x,y) d(\mathsf{T} x,\mathsf{T} y) = 0 \leqslant \frac{11}{12} \mathsf{M}_\mathsf{T}(x,y).$$

(ii) If x = 3 and y = 4, then

$$\left(\frac{6}{5}\right)^4 \alpha(3,4) d(T3,T4) = 2.11 \leqslant \frac{11}{12} M_T(3,4) = 2.20.$$

That is $\frac{5}{12}d(x,Tx) < d(x,y)$ and $\alpha(x,y) \ge 1$ implies that $\zeta(\left(\frac{6}{5}\right)^4 \alpha(x,y)d(Tx,Ty), M_T(x,y)) \ge 0$ for all distinct $x, y \in X$. Moreover, there exists $x_0 \in X$ such that $\alpha(x_0,Tx_0) \ge 1$. In fact, for $x_0 = 1$, we have $\alpha(1,T1) = \alpha(1,2) = 1$. Here all conditions of Theorem 2.1 hold, therefore T has a fixed point. Here, x = 2 is a fixed point of T.

Remark 2.4. In b-metric space defined as above, Theorem 3.4 in [6] fails. By choosing x = 2 and y = 4, we have $\zeta(\frac{6}{5}d(T2,T4), d(2,4)) < 0$. Thus it is not a b-simulation function.

Corollary 2.5. Let (X, d) be a complete b-metric space with coefficient $s \ge 1$ and $\alpha : X \times X \to \mathbb{R}$ be a function. A mapping $T : X \to X$ be a self mapping and $\zeta \in \mathbb{Z}$. Suppose that the following conditions are satisfied:

(i) T is Suzuki type α -Z contraction with respect to ζ , i.e.,

$$\frac{1}{2s}d(x,Tx) < d(x,y) \Rightarrow \zeta(s^4\alpha(x,y)d(Tx,Ty),d(x,y)) \ge 0,$$

for all distinct $x, y \in X$ *;*

(ii) T is a triangular α - admissible;

- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv) either T is continuous or for any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}_0$ such that $x_n \to x \in X$ as $n \to \infty$, we have $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N}_0$.

Then T *has a fixed point* $x^* \in X$ *.*

By setting s = 1 in Theorem 2.1, we deduce the following result.

Corollary 2.6. Let (X, d) be a complete metric space and $\alpha : X \times X \to \mathbb{R}$ be a function. Let $T : X \to X$ be a self mapping and $\zeta \in \mathcal{Z}$. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type α -Z-contraction with respect to ζ , i.e.,

$$\frac{1}{2}d(x,Tx) < d(x,y) \Rightarrow \zeta(\alpha(x,y)d(Tx,Ty),M(x,y)) \ge 0,$$

for all distinct $x, y \in X$, where

$$M(x,y) = \max\left\{d(x,y), d(x,Tx), d(y,Ty), \frac{d(x,Ty) + d(y,Tx)}{2}\right\};$$

- (ii) T is a triangular α admissible;
- (iii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$;
- (iv) either T is continuous or for any sequence $\{x_n\}$ in X with $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}_0$ such that $x_n \to x \in X$ as $n \to \infty$, we have $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N}_0$.

Then T *has a fixed point* $x^* \in X$ *.*

Corollary 2.7. Adding condition (A) to the hypotheses of Corollary 2.5 (resp. Corollary 2.6), we obtain that x^* is the unique fixed point of T.

Acknowledgment

Authors are indebted to the referee for his careful reading of the manuscript and valuable suggestions.

References

- H. Aydi, M. Jellali, E. Karapinar, On fixed point results for α-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control, 21 (2016), 40–56.
- [2] G. V. R. Babu, D. T. Mosissa, Fixed point in b-metric space via simulation function, Novi Sad J. Math., 47 (2017), 133–147. 1
- [3] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric space, Int. J. Mod. Math., 4 (2009), 285–301. 1, 1.2
- [4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1, 1.1
- [5] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
- [6] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iran. J. Math. Sci. Inform., 11 (2016), 123–136. 2.4
- [7] E. Karapinar, P. Kumam, P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1, 1.4, 1.5
- [8] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194.
 1, 1.6, 1.7, 1.8
- [9] P. Kumam, D. Gopal, L. Budhia, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8 (2017), 113–119. 1, 1.9, 1.10, 1.11
- [10] B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of α-ψ-Ćirić generalized multifunctions, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
- [11] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, An. Univ. Vest Timi. Ser. Mat.-Inform., 48 (2010), 125–137. 1

- [12] A. Padcharoen, P. Kumam, P. Saipara, P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math., 42 (2018), 419–430. 1, 1.12
- [13] J. R. Roshan, V. Parvaneh, Z. Kadelberg, *Common fixed point theorems for weakly isotone increasing mappings in ordered* b-*metric spaces*, J. Nonlinear Sci. Appl., 7 (2014), 229–245. 1
- [14] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawi, Common fixed points of almost generalized (ψ, φ)scontractive mappings in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages. 1
- [15] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha \psi$ -contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. 1, 1.3