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Abstract
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1. Introduction and Preliminaries

In 1993, Czerwik [4] generalized the concept of metric space by introducing a real number s > 1 in the
triangle inequality of metric space and give the notion of b-metric spaces. Since then several papers have
been published on the fixed point theory of various classes of single-valued and multi-valued operators
in b-metric spaces (see, [3, 5, 11, 14]).

Definition 1.1 ([4]). Let X be a non-empty set and s > 1 be a given real number. A function d : X× X →
[0,∞) is said to be a b-metric space if, for all x,y, z ∈ X, the following conditions are satisfied:

(i) d(x,y) = 0 iff x = y;
(ii) d(x,y) = d(y, x);

(iii) d(x, z) 6 s[d(x,y) + d(y, z)].

The pair (X,d) is called a b-metric space.

It should be noted that, every metric space is a b-metric space with s = 1 and hence the class of
b-metric spaces is larger than the class of metric spaces. But a metric space does not need to be b-metric
space (see [13, example 1.4]).
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Definition 1.2 ([3]). Let (X,d) be a b-metric space.

(i) A sequence {xn} in X is called b-convergent if and only if there exists x ∈ X such that d(xn, x) → 0,
as n→∞. In this case, we write limn→∞ xn → x.

(ii) {xn} in X is said to be b-Cauchy if and only if d(xn, xm)→ 0, as n,m→∞.
(iii) The b-metric space (X,d) is said to be b-complete if every b-Cauchy sequence {xn} in X is convergent.

In 2012, Samet et al. [15] introduced the concept of α-admissible mapping.

Definition 1.3 ( [15]). Let T be a self mapping on X and α : X×X→ [0,∞) be a function. We say that T is
α-admissible, if x,y ∈ X,

α(x,y) > 1 =⇒ α(Tx, Ty) > 1.

The concept of α-admissible mappings has been used by several researchers (see for example [1, 10]).
Later, Karapinar et al. [7] introduced the notion of triangular α-admissible mappings.

Definition 1.4 ([7]). Let T : X→ X and α : X×X→ R. Then T is said to be triangular α-admissible if

(T1) T is α-admissible;
(T2) α(x,y) > 1 and α(y, z) > 1 =⇒ α(x, z) > 1, x,y, z ∈ X.

Lemma 1.5 ([7]). Let T be a triangular α-admissible mapping. Assume that there exists x0 ∈ X such that
α(x0, Tx0) > 1. Define sequence {xn} by xn = Tnx0. Then α(xm, xn) > 1 for all m,n ∈N with m < n.

Recently, in 2015, Khojasteh et al. [8] introduced the notion of simulation function with a view to
consider a new class of contractions, called Z-contraction with respect to a simulation function. Such
family generalized the Banach contraction and unified some known nonlinear contractions.

Definition 1.6 ([8]). A simulation function is a mapping ζ : [0,∞)× [0,∞) → R, satisfying the following
conditions:

(i) (ζ1) ζ(0, 0) = 0;
(ii) (ζ2) ζ(t, s) < s− t, for all s, t > 0;

(iii) (ζ3) if {tn}, {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0,

then lim supn→∞ ζ(tn, sn) < 0. We denote the set of all simulation functions by Z.

Example 1.7 ([8]). Let ζ : [0,∞)× [0,∞)→ R, be defined by

(i) ζ(t, s) = ψ(s) −φ(t) for all t, s ∈ [0,∞), where φ,ψ : [0,∞) → [0,∞) are two continuous functions
such that ψ(t) = φ(t) = 0 if and only if t = 0 and ψ(t) < t 6 φ(t) for all t > 0;

(ii) ζ(t, s) = s−
f(t, s)
g(t, s)

t for all t, s ∈ [0,∞), where f,g : [0,∞) → [0,∞) are two continuous functions

with respect to each variable such that f(t, s) > g(t, s) for all t, s > 0 ;
(iii) ζ(t, s) = s−φ(s) − t for all t, s ∈ [0,∞), where φ : [0,∞)→ [0,∞) is a continuous functions such that

φ(t) = 0 if and only if t = 0.

These are simulation functions.

Definition 1.8 ([8]). Let (X,d) be a metric space, T : X → X be a mapping and ζ ∈ Z. Then T is called a
Z-contraction with respect to ζ if the following condition is satisfied

ζ(d(Tx, Ty),d(x,y)) > 0,

for all x,y ∈ X.
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Later, in 2017, Kumam et al. [9] introduce the notion of Suzuki type Z-contraction as follows.

Definition 1.9 ([9]). Let (X,d) be a metric space, T : X → X be a mapping and ζ ∈ Z. Then T is called a
Suzuki type Z-contraction with respect to ζ, if the following condition is satisfied

1
2
d(x, Tx) < d(x,y)⇒ ζ(d(Tx, Ty),d(x,y)) > 0,

for all x,y ∈ X, with x 6= y.

Remark 1.10 ([9]). It is clear from the definition of simulation function that ζ(t, s) < s − t 6 0, for all
t > s > 0. Therefore if T is a Suzuki type Z-contraction with respect to ζ, then

1
2
d(x, Tx) < d(x,y)⇒ d(Tx, Ty) < d(x,y),

for all distinct x,y ∈ X.

Theorem 1.11 ([9]). Let (X,d) be a metric space and T : X → X be a Suzuki type Z-contraction with respect to
ζ ∈ Z. Then T has at most one fixed point.

In 2018, Padcharoen et al. [12] introduced the generalized Suzuki type Z-contraction in metric space
as follows.

Definition 1.12 ([12]). Let (X,d) be a metric space, T : X → X a mapping and ζ ∈ Z. Then T is called a
generalized Suzuki type Z-contraction with respect to ζ, if the following condition is satisfied

1
2
d(x, Tx) < d(x,y)⇒ ζ(d(Tx, Ty),M(x,y)) > 0,

for all distinct x,y ∈ X, where

M(x,y) = max
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
2

}
.

Motivated and inspired by Definition 1.12 and the work of Babu et al. [2], we introduced the definition
of generalized Suzuki type α-Z-contraction with respect to ζ in b-metric space.

Definition 1.13. Let (X,d) be a b-metric space with coefficient s > 1 and α : X× X → R be a function. A
mapping T : X→ X is said to be a generalized Suzuki type α-Z contraction with respect to ζ if there exists
a simulation function ζ ∈ Z such that

1
2s
d(x, Tx) < d(x,y)⇒ ζ(s4α(x,y)d(Tx, Ty),MT (x,y)) > 0, (1.1)

for all distinct x,y ∈ X, where

MT (x,y) = max
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
2s

}
.

Remark 1.14. It is clear from the definition of simulation function that ζ(t, s) < s− t 6 0, for all t > s > 0.
Therefore if T is a generalized Suzuki type α-Z-contraction with respect to ζ, then

1
2s
d(x, Tx) < d(x,y)⇒ s4α(x,y)d(Tx, Ty) < M(x,y)),

for all distinct x,y ∈ X.

2. Main result

Theorem 2.1. Let (X,d) be a complete b-metric space with coefficient s > 1 and α : X×X→ R be a function. Let
T : X→ X be a self mapping and ζ ∈ Z. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type α-Z-contraction with respect to ζ;
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(ii) T is a triangular α- admissible;
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1;
(iv) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) > 1 for all n ∈ N0 such that

xn → x ∈ X as n→∞, we have α(xn, x) > 1 for all n ∈N0.

Then T has a fixed point x∗ ∈ X.

Proof. By assumption (iii), there exists a point x0 ∈ X such that α(x0, Tx0) > 1. Define a sequence {xn} in
X by xn+1 = Txn for all n ∈ N0 (where N0 = N ∪ {0}, N = set of natural numbers). If there exists an
n0 such that xn0+1 = xn0 for some n0 ∈ N0, then xn0 is a fixed point of T , which completes the proof.
Therefore we assume that xn 6= xn+1, for all n ∈N0. Hence we have

1
2s
d(xn, Txn) < d(xn, xn+1) for all n ∈N0.

The mapping T is triangular α-admissible by Lemma 1.5, we have

α(xn, xn+1) > 1, for all n ∈N0.

Then by (1.1), we have

0 6 ζ(s4α(xn, xn+1)d(Txn, Txn+1),MT (xn, xn+1) < MT (xn, xn+1) − s
4α(xn, xn+1)d(Txn, Txn+1).

Consequently, we drive that

d(xn+1, xn+2) 6 s
4α(xn, xn+1)d(Txn, Txn+1) < MT (xn, xn+1).

Thus we have

d(xn+1, xn+2) < MT (xn, xn+1), (2.1)

where

MT (xn, xn+1) = max
{
d(xn, xn+1),d(xn, Txn),d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)
2s

}
= max

{
d(xn, xn+1),d(xn, xn+1),d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}
= max

{
d(xn, xn+1),d(xn+1, xn+2),

d(xn, xn+2)

2s

}
.

Since

d(xn, xn+2)

2s
6
s[d(xn, xn+1) + d(xn+1, xn+2)]

2s
6 max{d(xn, xn+1),d(xn+1, xn+2)},

then we get

MT (xn, xn+1) 6 max{d(xn, xn+1),d(xn+1, xn+2)}.

If d(xn, xn+1) < d(xn+1, xn+2), then

max{d(xn, xn+1),d(xn+1, xn+2)} = d(xn+1, xn+2).

Then (2.1) becomes

d(xn+1, xn+2) < d(xn+1, xn+2),
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which is a contradiction. Thus we conclude that

d(xn+1, xn+2) < d(xn, xn+1). (2.2)

Which implies that d(xn, xn+1) is monotonically decreasing sequence of non negative real numbers. Thus
there exists r > 0, such that limn→∞ d(xn, xn+1) = r. We shall prove that r = 0. Suppose on the contrary
that r > 0. Letting tn = α(xn, xn+1)d(xn+1, xn+2) and sn = d(xn, xn+1) and using (ζ3), we get

0 6 lim sup
n→∞ ζ(s4α(xn, xn+1)d(xn+1, xn+2),d(xn, xn+1)) < 0,

which is a contradiction. Thus we conclude that r = 0, i.e.,

lim
n→∞d(xn, xn+1) = 0. (2.3)

Now, we shall prove that {xn} is a Cauchy sequence. Suppose on the contrary that {xn} is not a Cauchy
sequence. Thus there exist ε > 0 and the sequences {u(n)}∞n=1 and {v(n)}∞n=1 of natural numbers such that

u(n) > v(n) > n, d(xu(n), xv(n)) > ε. (2.4)

Moreover, corresponding to v(n), we can choose the smallest u(n) satisfying (2.4). Then

d(xu(n)−1, xv(n)) < ε. (2.5)

By using (2.4), (2.5), and the triangle inequality, we get

ε 6 d(xu(n), xv(n)) 6 s[d(xu(n), xu(n)−1) + d(xu(n)−1, xv(n))] 6 sd(xu(n), xu(n)−1) + sε.

Taking the upper and lower limits as n→∞ and using (2.3), we get

ε 6 lim inf
n→∞ d(xu(n), xv(n)) 6 lim sup

n→∞ d(xu(n), xv(n)) 6 sε. (2.6)

Again by the triangle inequality, we have

ε 6 d(xu(n), xv(n)) 6 s[d(xu(n), xv(n)+1) + d(xv(n)+1, xv(n))] (2.7)

and

d(xu(n), xv(n)+1) 6 s[d(xu(n), xv(n)) + d(xv(n), xv(n)+1)]. (2.8)

So from (2.3), (2.6), (2.7), and (2.8), we have

ε

s
6 lim sup

n→∞ d(xu(n), xv(n)+1) 6 s
2ε. (2.9)

Again, using above process we get

ε

s
6 lim sup

n→∞ d(xu(n)+1, xv(n)) 6 s
2ε. (2.10)

By the triangle inequality

d(xu(n), xv(n)+1) 6 s[d(xu(n), xu(n)+1) + d(xu(n)+1, xv(n)+1)].

Now using (2.3) and (2.9)

ε

s2 6 lim sup
n→∞ d(xu(n)+1, xv(n)+1). (2.11)
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By the triangle inequality

d(xu(n)+1, xv(n)+1) 6 s[d(xu(n)+1, xv(n)) + d(xv(n), xv(n)+1)]

6 s2[d(xu(n)+1, xu(n)) + d(xu(n), xv(n))] + sd(xv(n), xv(n)+1).

Using (2.6)

lim sup
n→∞ d(xu(n)+1, xv(n)+1) 6 s

3ε. (2.12)

So from (2.11) and (2.12), we have

ε

s2 6 lim sup
n→∞ d(xu(n)+1, xv(n)+1) 6 s

3ε. (2.13)

Similarly, we can obtain

ε

s2 6 lim inf
n→∞ d(xu(n)+1, xv(n)+1) 6 s

3ε. (2.14)

Using (2.13) and (2.14), we have

ε

s2 6 lim inf
n→∞ d(xu(n)+1, xv(n)+1) 6 lim sup

n→∞ d(xu(n)+1, xv(n)+1) 6 s
3ε. (2.15)

Now from (2.3), (2.4), and (2.5), we can choose a positive integer n1 ∈N such that

1
2s
d(xu(n), Txu(n)) <

ε

2s
< d(xu(n), xv(n)), ∀n > n1.

Then by assumption of the theorem for every n > n1 and by Lemma 1.5, we have α(xu(n), xv(n)) > 1.
Then from (1.1), we have

0 6 ζ(s4α(xu(n), xv(n))d(xu(n)+1, xv(n)+1),MT (xu(n), xv(n)))

< MT (xu(n), xv(n)) − s
4α(xu(n), xv(n))d(xu(n)+1, xv(n)+1),

(2.16)

which is equivalent to

d(xu(n)+1, xv(n)+1) 6 s
4α(xu(n), xv(n))d(xu(n)+1, xv(n)+1) < MT (xu(n), xv(n)),

where

MT (xu(n), xv(n)) = max
{
d(xu(n), xv(n)),d(xu(n), Txu(n)),d(xv(n), Txv(n)),

d(xu(n), Txv(n)) + d(xv(n), Txu(n))

2s

}
= max

{
d(xu(n), xv(n)),d(xu(n), xu(n)+1),d(xv(n), xv(n)+1),

d(xu(n), xv(n)+1) + d(xv(n), xu(n)+1)

2s

}
.

Taking the upper limit as n→∞ on each side of the above inequality and using (2.6), (2.9), and (2.10), we
have

lim sup
n→∞ MT (xu(n), xv(n)) = lim sup

n→∞ [max
{
sε, 0, 0,

s2ε+ s2ε

2s

}
] = sε.
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Therefore from (2.16) taking upper limit and using (2.15), we get

0 6 lim sup
n→∞ ζ

(
s4α(xu(n), xv(n))d(xu(n)+1, xv(n)+1),MT (xu(n), xv(n))

)
< lim sup

n→∞
[
MT (xu(n), xv(n)) − s

4α(xu(n), xv(n))d(xu(n)+1, xv(n)+1)
]

6 lim sup
n→∞ MT (xu(n), xv(n)) − s

4α(xu(n), xv(n)) lim inf
n→∞ d(xu(n)+1, xv(n)+1)

6 sε− s4α(xu(n), xv(n))
( ε
s2

)
< 0,

which is a contradiction. Hence {xn} is a Cauchy sequence in (X,d). Since X is complete b-metric space,
then there exists x∗ ∈ X such that

lim
n→∞ xn = x∗. (2.17)

Now, we show that x∗ is a fixed point of T . Assume that (iv) holds, then α(xn, x∗) > 1. We claim that, for
every n ∈N,

1
2s
d(xn, Txn) < d(xn, x∗) or

1
2s
d(Txn, T 2xn) < d(Txn, x∗). (2.18)

Suppose on the contrary that there exists m ∈N, such that

1
2s
d(xm, Txm) > d(xm, x∗) and

1
2s
d(Txm, T 2xm) > d(Txm, x∗). (2.19)

Therefore

2sd(xm, x∗) 6 d(xm, Txm) 6 s[d(xm, x∗) + d(x∗, Txm)].

Which implies that

d(xm, x∗) 6 d(x∗, Txm). (2.20)

Now, from (2.2) and (2.20) we have

d(Txm, T 2xm) < d(xm, Txm) 6 s[d(xm, x∗) + d(x∗, Txm)] 6 2sd(x∗, Txm). (2.21)

It follows from (2.19) and (2.21) that

d(Txm, T 2xm) < d(Txm, T 2xm).

This is a contradiction. Hence (2.18) holds. If part (i) of (2.18) is true, by generalized Suzuki type α-
Z-contraction with respect to ζ, we have

0 6 ζ(s4α(xn, x∗)d(Txn, Tx∗),MT (xn, x∗)) < MT (xn, x∗) − s4α(xn, x∗)d(Txn, Tx∗),

which is equivalent to

d(Txn, Tx∗) 6 s4α(xn, x∗)d(Txn, Tx∗) < MT (xn, x∗),

where

MT (xn, x∗) = max
{
d(xn, x∗),d(xn, Txn),d(x∗, Tx∗),

d(xn, Tx∗) + d(x∗, Txn)
2s

}
.
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Letting n→∞ and by using (2.17), we obtain

lim
n→∞MT (xn, x∗) = d(x∗, Tx∗). (2.22)

By using (2.21), (2.22), (iv), and (ζ3), we have

0 6 ζ
(
s4α(xn, x∗)d(Txn, Tx∗),MT (xn, x∗)

)
6 lim sup

n→∞ ζ
(
s4α(xn, x∗)d(Txn, Tx∗),MT (xn, x∗)

)
6 lim sup

n→∞
[
MT (xn, x∗) − s4α(xn, x∗)d(Txn, Tx∗)

]
.

According to property (ζ3) from Definition 1.6, since the both sequences d(Txn, Tx∗),MT (xn, x∗) converge
to the d(x∗, Tx∗) > 0. By assumption it is clear that

0 6 lim sup
n→∞ ζ

(
s4α(xn, x∗)d(Txn, Tx∗),MT (xn, x∗)

)
< 0,

which is a contradiction. Hence x∗ = Tx∗, i.e., x∗ is a fixed point of T . If part (ii) of (2.18) is true, using a
similar method to the above, we get x∗ = Tx∗. Hence x∗ is a fixed point of T .

Now, we prove the uniqueness of the fixed point result. We need the following additional condition.

(A) For all x∗,y∗ ∈ Fix(T), there exists z ∈ X such that α(x∗, z) > 1 and α(y∗, z) > 1, where Fix(T)
denotes the set of fixed points of T .

Theorem 2.2. By adding condition (A) to the hypothesis of Theorem 2.1, we obtain that x∗ is the unique fixed point
of T.

Proof. We argue by contradiction, i.e., if x∗,y∗ ∈ X are two fixed points of T , such that x∗ 6= y∗. Since T is
triangular α-admissible and by assumption (A), we have α(x∗,y∗) > 1, then we have 0 = 1

2sd(x
∗, Tx∗) <

d(x∗,y∗) and from (1.1), we obtain

ζ(s4α(x∗,y∗)d(Tx∗, Ty∗),MT (x
∗,y∗)) > 0, (2.23)

where

MT (x
∗,y∗) = max

{
d(x∗,y∗),d(x∗, Tx∗),d(y∗, Ty∗),

d(x∗, Ty∗) + d(y∗, Tx∗)
2s

}
= d(x∗,y∗).

So, by (2.23), we have

0 6 ζ(s4α(x∗,y∗)d(Tx∗, Ty∗),MT (x
∗,y∗)) = ζ(s4α(x∗,y∗)d(x∗,y∗),d(x∗,y∗))

< d(x∗,y∗) − s4α(x∗,y∗)d(x∗,y∗) 6 0,

which is a contradiction. Hence, x∗ = y∗.

Example 2.3. Let X = {1, 2, 3, 4, 5} and d : X×X→ [0,∞) be defined as follows: d(1, 2) = d(2, 4) = d(3, 5) =
1, d(1, 5) = 1.02, d(1, 3) = d(3, 4) = 1.5, d(1, 4) = d(2, 5) = d(4, 5) = 2.4, d(2, 3) = 3, d(1, 1) = d(2, 2) =
d(3, 3) = d(4, 4) = d(5, 5) = 0, and d(x,y) = d(y, x) for all x,y ∈ X. As 3 = d(2, 3) � d(2, 1) + d(1, 3) = 2.5,
d is not a metric on X. Clearly (X,d) is a complete b-metric space with parameter s = 6

5 . We define
T : X→ X such that

T(1) = T(2) = T(5) = 2, T(3) = 5, and T(4) = 1.

Let A =
{
(1, 1), (1, 2), (2, 1), (2, 2), (2, 5), (5, 2), (5, 5), (1, 5), (5, 1), (3, 4), (4, 3), (3, 3), (4, 4)

}
, and α : X× X →

R by
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α(x,y) =

{
1, if (x,y) ∈ A,
0, otherwise.

Let ζ : [0,∞) × [0,∞) → R defined by ζ(t, s) = 11
12s − t for all s, t ∈ [0,∞). Now we show that T is

α-admissible. If x,y ∈ {1, 2, 5}, then α(x,y) = 1 implies that α(Tx, Ty) = α(2, 2) = 1. If x,y ∈ {3, 4}
then, α(3, 4) = 1 implies that α(T3, T4) = α(5, 1) = 1. Thus for any x,y ∈ X, α(x,y) = 1 implies that
α(Tx, Ty) = 1. Therefore T is α-admissible. If x,y, z ∈ {1, 2, 5}, then α(x,y) = 1 and α(y, z) = 1 implies
that α(x, z) = 1. If x,y ∈ {3, 4}, then α(x, z) = 1 and α(y, z) = 1 implies that α(x,y) = 1. Thus for any
x,y, z ∈ X, α(x, z) = 1 and α(z,y) = 1 implies that α(x,y) = 1. Therefore T is triangular α-admissible
mapping. Now we verify the inequality (1.1) for all distinct x,y ∈ X. Note that for all distinct x,y ∈ X
and for s = 6

5 the inequalities 5
12d(x, Tx) < d(x,y) and α(x,y) > 1, give

(x,y) ∈
{
(1, 2), (2, 1), (2, 5), (5, 2), (1, 5), (5, 1), (3, 4), (4, 3)

}
.

So, this implies that

ζ(s4α(x,y)d(Tx, Ty),MT (x,y)) = ζ(
(6

5

)4
α(x,y)d(Tx, Ty),MT (x,y))

=
11
12
MT (x,y) −

(6
5

)4
α(x,y)d(Tx, Ty) > 0,

implies that(6
5

)4
α(x,y)d(Tx, Ty) 6

11
12
MT (x,y) =

11
12
[

max
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
12/5

}]
.

Now, we consider the following cases.

(i) If x,y ∈ {1, 2, 5}, then (6
5

)4
α(x,y)d(Tx, Ty) = 0 6

11
12
MT (x,y).

(ii) If x = 3 and y = 4, then (6
5

)4
α(3, 4)d(T3, T4) = 2.11 6

11
12
MT (3, 4) = 2.20.

That is 5
12d(x, Tx) < d(x,y) and α(x,y) > 1 implies that ζ(

(
6
5

)4
α(x,y)d(Tx, Ty),MT (x,y)) > 0 for all

distinct x,y ∈ X. Moreover, there exists x0 ∈ X such that α(x0, Tx0) > 1. In fact, for x0 = 1, we have
α(1, T1) = α(1, 2) = 1. Here all conditions of Theorem 2.1 hold, therefore T has a fixed point. Here, x = 2
is a fixed point of T .

Remark 2.4. In b-metric space defined as above, Theorem 3.4 in [6] fails. By choosing x = 2 and y = 4, we
have ζ( 6

5d(T2, T4),d(2, 4)) < 0. Thus it is not a b-simulation function.

Corollary 2.5. Let (X,d) be a complete b-metric space with coefficient s > 1 and α : X×X→ R be a function. A
mapping T : X→ X be a self mapping and ζ ∈ Z. Suppose that the following conditions are satisfied:

(i) T is Suzuki type α-Z contraction with respect to ζ, i.e.,

1
2s
d(x, Tx) < d(x,y)⇒ ζ(s4α(x,y)d(Tx, Ty),d(x,y)) > 0,

for all distinct x,y ∈ X;
(ii) T is a triangular α- admissible;
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(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1;
(iv) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) > 1 for all n ∈ N0 such that

xn → x ∈ X as n→∞, we have α(xn, x) > 1 for all n ∈N0.

Then T has a fixed point x∗ ∈ X.

By setting s = 1 in Theorem 2.1, we deduce the following result.

Corollary 2.6. Let (X,d) be a complete metric space and α : X× X → R be a function. Let T : X → X be a self
mapping and ζ ∈ Z. Suppose that the following conditions are satisfied:

(i) T is generalized Suzuki type α-Z-contraction with respect to ζ, i.e.,

1
2
d(x, Tx) < d(x,y)⇒ ζ(α(x,y)d(Tx, Ty),M(x,y)) > 0,

for all distinct x,y ∈ X, where

M(x,y) = max
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
2

}
;

(ii) T is a triangular α- admissible;
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1;
(iv) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) > 1 for all n ∈ N0 such that

xn → x ∈ X as n→∞, we have α(xn, x) > 1 for all n ∈N0.

Then T has a fixed point x∗ ∈ X.

Corollary 2.7. Adding condition (A) to the hypotheses of Corollary 2.5 (resp. Corollary 2.6), we obtain that x∗ is
the unique fixed point of T .
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[8] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat,

29 (2015), 1189–1194. 1, 1.6, 1.7, 1.8
[9] P. Kumam, D. Gopal, L. Budhia, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal.,

8 (2017), 113–119. 1, 1.9, 1.10, 1.11
[10] B. Mohammadi, S. Rezapour, N. Shahzad, Some results on fixed points of α-ψ-Ćirić generalized multifunctions, Fixed
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