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Abstract
In this article, we establish the existence of solutions for a functional integral equation of fractional order. The study upholds

the case when the set-valued function has L1-Carathèodory selections, we reformulate the functional integral inclusion according
to these selections via a classical fixed point theorem of Schauder and present theorem for the existence of integrable solutions.
As an application, the existence of solutions of nonlinear functional integro-differential inclusion with an initial value, and the
initial value problem for the arbitrary-order differential inclusion will be studied.
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1. Introduction

The topic of differential and integral inclusions is of much interest in the subject of set-valued analy-
sis. Differential equations and control processes, the existence theorems for the inclusions problems are
generally obtained under the assumption that the set-valued function is either lower or upper semicon-
tinuous on the domain of its definitions (see [2, 21]) and for the discontinuity of the set-valued function
(see [8]).

Indeed set-valued functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning this problem (see [1, 10–15, 18]).

In this paper we discuss the existence of integrable solutions to the following fractional order func-
tional integral inclusion

x(t) ∈ F1(t, Iαf2(t, x(t))), ∈ [0, T ], (1.1)

where α ∈ (0, 1) and F1 : [0, T ]× R+ → P(R) is a set-valued mapping and P(R) denotes the family of
nonempty subsets of R under a set of several suitable assumptions on the function F1.

∗Corresponding author
Email addresses: amasayed@alexu.edu.eg (A. M. A. El-Sayed), shorouk.alissa@liu.edu.lb (Sh. M. Al-Issa)

doi: 10.22436/jnsa.013.04.02

Received: 2019-08-26 Revised: 2019-10-31 Accepted: 2019-11-27

http://dx.doi.org/10.22436/jnsa.013.04.02
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.013.04.02&domain=pdf


A. M. A. El-Sayed, Sh. M. Al-Issa, J. Nonlinear Sci. Appl., 13 (2020), 180–186 181

Our study is based on the selections of the set-valued function F1 by reformulating the functional
integral inclusion (1.1) into a coupled system. We present the existence of integrable solution under the
assumption that a set-valued function F1 has L1-Carathèodory selection and with the classical Schauder
fixed point principle and Kolmogorov compactness criterion.

As an application we study the existence of solutions of integro- differential inclusion of fractional
order

x(t) ∈
∫t

0
F1(s, Iαf2(s, x ′(s))) ds, t ∈ [0, T ], with x(0) = x◦. (1.2)

Also, the initial-value problem for the arbitrary (fractional) order differential inclusion

dx(t)

dt
∈ F1(t,Dβx(t)), a.e. t ∈ (0, T ], β ∈ (0, 1], x(0) = x◦, (1.3)

where F1(t, x(t)) L1-Carathèodory set-valued function defined on (0, T ]× R+ will be studied.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary facts from set-valued analysis
which are used throughout this paper. Denote by L1(I) the class of Lebesgue integrable functions on the
interval I = [0, T ], endowed with the usual norm

‖x‖ =
∫T

0
|x(t)| dt.

Definition 2.1. The Riemann-Liouville of a fractional integral of the function f ∈ L1(I) of order α ∈ R+ is
defined by

Iαa f(t) =

∫t
a

(t− s)α−1

Γ(α)
f(s) ds

and when a = 0, we have Iα f(t) = Iα0 f(t).

Definition 2.2. The (Caputo) fractional-order derivative Dα, α ∈ (0, 1] of the absolutely continuous func-
tion g is defined as

Dαa g(t) = I
1−α
a

d

dt
g(t) =

∫t
0

(t − s)− α

Γ(1 − α)

d

ds
g(s)ds, t ∈ [a,b].

For further properties of fractional calculus operator see [20, 22–24].

Definition 2.3. Let X and Y be two nonempty sets, a set-valued (multi-valued) map F : X→ Y is a function
that associates to any element x ∈ X a subset F(x) of Y, called the (image) valued of F at x.

Definition 2.4. Let F be a strict set-valued map (we say F is strict if the domain of F is X itself ), f is called
a selection of F if f(x) ∈ F(x), for every x ∈ X, we denote by SF = {f : f(x) ∈ F(x), x ∈ X} the set of all
selections of F (for the properties of the selection of F see [6, 10, 17, 19]).

Definition 2.5. A single-valued function f : I→ R× R is called L1-Carathèodory if:

(1) t→ f(t, x) is measurable in t ∈ I for all x ∈ R;
(2) x→ f(t, x) is continuous in x ∈ R for almost all t ∈ I;
(3) there exists h ∈ L1(I) such that |f(t, x)| 6 h(t) for almost all t ∈ I.

Theorem 2.6 ([7]). Let F : I× R → P(R) be an L1-Carathèodory multi-function, the set S1F(., x(.)) is nonempty
(i.e., there exists a selector f of F which belongs to L1(I)).



A. M. A. El-Sayed, Sh. M. Al-Issa, J. Nonlinear Sci. Appl., 13 (2020), 180–186 182

Theorem 2.7 ([7], Schauder fixed point theorem). Let Q be a convex subset of a Banach space X, T : Q→ Q be
a compact, continuous map. Then T has at least one fixed point in Q.

Theorem 2.8 ([9], Kolmogorov compactness criterion). Let Ω ⊆ Lp(I), 1 6 P 6 ∞. If

(i) Ω is bounded in Lp(I); and
(ii) xh → x as h→ 0 uniformly with respect to x ∈ Ω,

then Ω is relatively compact in Lp(I), where

xh(t) =
1
h

∫t+h
0

x(s) ds.

3. Existence of integrable solutions

In this section, we present our main result by proving the existence of at least one solution x ∈ L1(I)
of the functional integral inclusion (1.1) under the following assumptions:

(H1) Let F1(t, x(t)) : I× R+ → 2R
+

satisfy the following assumptions:
(i) the set F1(t, x) is non-empty, closed and convex subset for all (t, x) ∈ I× R+;

(ii) F1(t, .) is upper semi-continuous in x ∈ R+ for each t ∈ I;
(iii) F1(., x) is measurable in t ∈ I for each x ∈ R+;
(iv) there exists an integrable function h(t) ∈ L1(I), such that |F1(t, x)| = sup{|f1| : f1 ∈ F1(t, x)} 6

h(t), for almost al t ∈ I;
(H2) f2 : I× R+ → R+, satisfies Carathèodory condition, i.e., f2 is measurable in t for any x ∈ R+ and

continuous in x for almost all t ∈ I. There exists a function a ∈ L1 and a constant b > 0 such that

|f2(t, x)| 6 a(t) + b |x|, ∀ t ∈ I and x ∈ R+.

Now, let
y(t) = Iαf2(t, x(t)), t ∈ I.

Then the nonlinear functional integral inclusion (1.1) can be written in the form of the coupled system of
functional inclusion and functional integral equation

x(t) ∈ F1(t,y(t)), t ∈ I. (3.1)
y(t) = Iαf2(t, x(t)), t ∈ I. (3.2)

Definition 3.1. Let X be the class of all ordered pairs (u, v), u, v ∈ C[0, T ], with the norm

‖(u; v)‖X = ‖u‖+ ‖v‖.

Definition 3.2. By a solution of the coupled system (3.1), (3.2) we mean the functions x,y ∈ L1(I) satisfying
(3.1), (3.2).

Now for the existence of integrable solution U = (x,y), x,y ∈ L1(I) of the coupled system (3.1), (3.2)
we have the following theorem.

Theorem 3.3. Let the assumptions (H1)-(H2) be satisfied. Then there exists at least one integrable solution U =
(x,y), x,y ∈ L1(I) of the coupled system (3.1), (3.2).

Proof. It is clear that from Theorem 2.6 and assumption (H2), the set of L1-Carathèodory selection of F1 is
non empty. So, the solution of the single-valued integral equation

x(t) = f1(t, Iαf2(t, x(t))), t ∈ I, (3.3)

where f1 ∈ SF1 , is a solution to the inclusion (1.1). It must be noted that the Carathèodory selection
f1 : I× R+ → R+ satisfies the following assumptions:
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(I) f1(x, .) is continuous in x ∈ R+ for almost all t ∈ I;
(II) f1(., t) is measurable in t ∈ I for any x ∈ R+;

(III) there exists an integrable function h(t) ∈ L1(I) such that |f1(t; x)| 6 h(t), t ∈ I.

Then the nonlinear functional integral equation (3.3) can be written in the form

x(t) = f1(t,y(t)), t ∈ I. (3.4)

Hence, the functional integral equation (3.3) is equivalent to the coupled system (3.2) and (3.4). Let

U(t) = (x(t),y(t)) = (f1(t,y(t)), Iαf2(t, x(t))), t ∈ I.

Let A be any operator defined by

AU(t) = A(x(t),y(t)) = (A1y(t),A2x(t)),

where A1y(t) = f1(t;y(t)), t ∈ I, A2x(t) = I
αf2(t, x(t)), t ∈ I. Let the set Qr be defined as

Qr = {U = (x,y) ∈ X : x,y ∈ L1[0, T ], ‖U‖ 6 r}, r = ‖h‖+ (‖a‖ + b‖x‖) Tα

Γ(α+ 1)
.

Then, it is clear that it is a nonempty, bounded, closed, and convex. Let U ∈ Qr be an arbitrary ordered
pair, then

|A1y(t)| = |f1(t;y(t))|, t ∈ I.

From the properties (1)-(3) of Definition 2.5, and by integration, we get∫t
0
|A1y(s)|ds =

∫t
0
|f1(s;y(s))|ds 6

∫t
0
|f1(s;y(s))|ds 6

∫t
0
h(s)ds 6

∫t
0
|h(s)|ds.

Then ‖A1y‖ 6 ‖h‖ and

|A2x(t)| = |Iαf2(t, x(t))|,

‖A2x‖ 6
∫t

0
|Iαf2(s, x(s))|ds

6
∫t

0
|

∫s
0

(s− τ)α−1

Γ(α)
f2(τ, x(τ)) dτ |ds

6
∫t

0

∫s
0

(s− τ)α−1

Γ(α)
|f2(τ, x(τ))| dτ ds

6
∫t

0

∫s
0

(s− τ)α−1

Γ(α)
|a(τ)|dτ ds+

∫t
0

∫s
0

(s− τ)α−1

Γ(α)
b |x(τ)|dτ ds

6
∫t

0
|a(τ)|

∫t
τ

(s− τ)α−1

Γ(α)
ds dτ+ b

∫t
0
|x(τ)|

∫t
τ

(s− τ)α−1

Γ(α)
ds dτ

6
∫t

0
|a(τ)|

(t− τ)α

Γ(α+ 1)
dτ+ b

∫t
0
|x(τ)|

(t− τ)α

Γ(α+ 1)
dτ

6
‖a‖ Tα

Γ(α+ 1)
+

b Tα

Γ(α+ 1)

∫t
0
|x(τ)|dτ

6
‖a‖ Tα

Γ(α+ 1)
+
b‖x‖ Tα

Γ(α+ 1)
.

Now

‖AU‖X = ‖A1y‖+ ‖A2x‖ 6 ‖h‖+
(‖a‖+ b‖x‖) Tα

Γ(α+ 1)
.
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Hence AU ∈ Qr, which proves that AQr ⊂ Qr, i.e., A : Qr→ Qr. The estimate shows that the operator A
maps l1(I) into itself.

Now, let us observe that the assumptions (I)-(III) imply that A1 is continuous on the set Qr (see [3, 5]),
and from the assumptions (H3), f2 is continuous in x and Iα maps L1(I) continuously into itself, then
Iαf(t, x(t)) is continuous in x, and the operator A2 is continuous on the set Qr (see [4, 16]). Hence, we
deduce that the operator A is continuous on Qr.

Finally, we will show thatA is compact, to prove this we will apply Kolmogorov compactness criterion.
Let Ω be a bounded subset of Qr. Then (AΩ) is bounded in L1(I), i.e, condition (i) of Theorem 2.8 is
satisfied.

It remains to show that (AU)h → AU in L1 as h→ 0 uniformly with respect to AU ∈ Ω. We have the
following.

Let U ∈ Ω ⊂ Qr, that is y, x ∈ Ω ⊂ Qr, {A1Ω} , {A2Ω} ⊂ Qr ⊂ L1(I), then

(A1y)h(t) − (A1y)(t) =
1
h

∫t+h
t

A1y(τ)dτ−A1y(t) =
1
h

∫t+h
t

(A1y(τ) −A1y(t))dτ,

and

|(A1y)h(t) − (A1y)(t)| 6
1
h

∫t+h
t

|A1y(τ) −A1y(t)|dτ,

then

‖(A1y)h(t) − (A1y)(t)‖ =
∫T

0
|(A1y)h(t) −A1y(t)|dt

6
∫T

0

1
h

∫t+h
t

|A1y(τ) −A1y(t)|dτ dt

6
∫T

0

1
h

∫t+h
t

|p(τ) − p(t)|dτ dt+

∫T
0

1
h

∫t+h
t

|f1(τ,y(τ)) − f1(t,y(t))|dτdt.

Now f1 ∈ L1(I), then ([25])
1
h

∫t+h
t

|f1(τ,y(τ)) − f1(t,y(t))|dτ→ 0.

Therefore (A1y)h → (A1y), uniformly as h→ 0,

‖(A2x)h(t) − (A2x)(t)‖ =
∫T

0
|(A2x)h(τ) −A2x(t)|dt

6
∫T

0

1
h

∫t+h
t

|A2x(τ) −A2x(t)|dτdt

6
∫T

0

1
h

∫t+h
t

|Iαf2(τ, x(τ)) − Iαf2(t, x(t))|dτdt.

Now f2 ∈ L1(I) and Iαf2 ∈ L1(I), then following ([25]) we have

1
h

∫t+h
t

|Iαf2(τ, x(τ)) − Iαf2(t, x(t))|dτ dt→ 0.

Therefore
(A2x)h → (A2x), uniformly as h→ 0.

Now

A(x,y)h(t) −A(x,y)(t) =
1
h

∫t+h
t

A(x,y)(τ) dτ−A(x,y)(t)
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=
1
h

∫t+h
t

(A(x,y)(τ) −A(x,y)(t)) dτ

=
1
h

∫t+h
t

((A2x(τ),A1y(τ)) − (A2x(t),A1y(t))) dτ.

Then

‖(AU)h(t) − (AU)(t)‖ = ‖A(x,y)h(t) −A(x,y)(t)‖

=

∫T
0
|
1
h

∫t+h
t

(A2x(τ),A1y(τ)) − (A2x(t),A1y(t))dτ| dt

6
∫T

0

1
h

∫t+h
t

|(A2x(τ),A1y(τ)) − (A2x(t),A1y(t))|dτdt

6
∫T

0

1
h

∫t+h
t

|(A2x(τ) −A2x(t)), (A1y(τ) −A1y(t))|dτdt

6
∫T

0

1
h

∫t+h
t

[|A2x(τ) −A2x(t)|+ |A1y(τ) −A1y(t)|]dτdt

6
∫T

0

1
h

∫t+h
t

|A2x(τ) −A2x(t)|dτdt+

∫T
0

1
h

∫t+h
t

|A1y(τ) −A1y(t)|]dτ dt→ 0,

since from the above estimate we show that

(A2x)h → (A2x), uniformly as h→ 0

and
(A1y)h → (A1y), uniformly as h→ 0.

Hence
(AU)h → (AU), uniformly as h→ 0.

Then, by Theorem 2.8 we deduce that (AΩ) is relatively compact, that is, A is a compact operator.
According to Schauder fixed point theorem, there exists at least one fixed point U ∈ Qr, and then the

system (3.2), (3.4) and consequently the system (3.1), (3.2) has at least one integrable solution U = (x,y) ∈
Qr, x;y ∈ L1(I). Hence, there exists at least one integrable solution of the functional integral inclusion
(1.1).

4. Integro-differential inclusion

As an application of our main result we present the existence of at least one solution x ∈ L1(I) of the
functional integro-differential inclusion (1.2).

Definition 4.1. By a solution of the problem of integro-differential inclusion (1.2) we mean a function
x ∈ L1(I) and this function satisfies (1.2).

Theorem 4.2. Let the assumptions of Theorem 3.3 be satisfied, then there exists at least one solution x ∈ L1(I) of
the integro-differential inclusion (1.2).

Proof. Differentiating both sides of (1.1), we obtain

x ′(t) ∈ F1(t, Iαf2(t, x ′(t))),

put x ′(t) = u(t) ∈ L1, then (1.1) will be similar to (1.2), and

x(t) = x(0) +

∫t
0
u(s) ds ∈ L1[0, T ],

and from Theorem 3.3 there exists at least one solution x ∈ L1(I) for the problem (1.2).
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5. Differential inclusion

Consider now the initial value problem of the differential inclusion (1.3).

Theorem 5.1. Let the assumptions of Theorem 3.3 be satisfied, then the initial value problem (1.3) has at least one
solution x ∈ L1(I).

Proof. Let y(t) =
dx(t)
dt , and α = β− 1, then the inclusion (1.3) will be

y(t) ∈ F1(t, Iβ−1y(t)). (5.1)

Letting f2(t, x) = x and applying Theorem 3.3 on the functional inclusion (5.1), we deduce that there exists
a solution y ∈ L1(I) of the functional inclusion (5.1).

This implies that there exists at least one solution x ∈ L1(I)

x(t) = x◦ +

∫t
0
y(s)ds

of the initial-value problem (1.3). This completes the proof.
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