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Abstract
In this paper, we are finding a solution of the fractional Wave-Schrodinger equation by Laplace transform in the sense of

Caputo fractional derivative. It was found that the fundamental solution of the equation is related to Wright function.
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1. Introduction

The Laplacian operator 4k iterated k-times is defined by

4k =

(
∂2

∂x2
1
+
∂2

∂x2
2
+ · · ·+ ∂2

∂x2
n

)k
,

where n is the dimension of space Rn and k is a non-negative integer. Kananthai [1] has proved that the
generalized function (−1)kS2k(x) is an elementary solution of the operator 4k, that is

4k(−1)kS2k(x) = δ,

where δ is the Dirac-delta distribution and S2k(x) is defined by

S2k(x) =
π−

n
2 2−2kΓ

(
n−2k

2

) (
x2

1 + x
2
2 + · · ·+ x2

n

) 2k−n
2

Γ (k)
. (1.1)

In 2002, Kananthai et al. [2] have first introduced the operator 4ki and is defined by

4ki =

 p∑
i=1

∂2

∂x2
i

+ i

p+q∑
j=p+1

∂2

∂x2
j

 , i =
√
−1.
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They have proved the function (−1)k(−i)
q
2 S2k(x) is an elementary solution of the operator 4ki and S2k(x)

is defined by (1.1). It is well known that the linear Schrodinger equation can be written as the following
form

∂

∂t
u(x, t) = i

∂2

∂x2u(x, t), i =
√
−1

with the initial condition
u(x, 0) = f(x).

The Schrodinger equation has been widely in application in science and engineering, there are several
integral transforms such as Laplace transform, Fourier transform, Wavelet transform, etc., for solving the
equation.

The purpose of this work is to introduce a new function where related the Wright function [3, 4] and
studied Laplace transform of a new function. After that, we are solving the fundamental solution of the
Wave-Schrodinger equation as follows:

∂α

∂tα
φ(x, t) + i

∂2

∂x2φ(x, t) = 0 , i =
√
−1 , 1 < α 6 2,

with the initial condition

φ(x, 0) = 0 , φt(x, 0) = δ(x),

where δ is the Dirac-delta distribution and ∂α

∂tα is the Caputo derivative. Before going that point, the
following definitions and some important concepts are needed.

2. Preliminaries

Definition 2.1. Let f(t) be a function an exponential order and piecewise continuous. The Laplace trans-
form of the function f is given by

L[f(t)] =

∫∞
0
e−stf(t)dt. (2.1)

Definition 2.2. Let f(t) be a function of the Schwart space, the Fourier transform of f(t) is given by

f̂(w) =

∫
R

f(t)eiwtdt.

Definition 2.3. For m to be the smallest integer that exceeds α, the Caputo fractional derivatives of order
α is defined by

Dαu(x, t) =
∂αu(x, t)
∂tα

=

{
1

Γ(m−α)

∫t
0(t− τ)

m−n−1 ∂m
∂tmu(x, t),

∂m

∂tmu(x, t), n = m.

Definition 2.4. The Laplace transform of the Caputo fractional derivative is defined by

L[Dαf(t)] = sαF(s) −

n−1∑
k=0

sα−k−1f(k)(0) , n− 1 < α < n.

Definition 2.5. The Wright function Wα,β is defined by

Wα,β =

∞∑
n=0

Zn

n!Γ(nα+β)
, α > −1 , β ∈ C, (2.2)

where Γ(x) is the Euler Gamma function given by the integral

Γ(x) =

∫∞
0
tx−1e−6dt.



W. Satsanit, J. Nonlinear Sci. Appl., 13 (2020), 176–179 178

Lemma 2.6. The function γ(a, t) is defined by the following expressions

γ(a, t) = t−α+1W−α , 2−α(at
−α)

and Laplace transform of γ(a, t) is given by

L[γ(a, t)] = sα−2eas
α

.

Proof. By (2.1), we have

L[γ(a, t)] =
∫∞

0
e−stt−α+1W−α , 2−α(at

−α)dt

=

∫∞
0
e−stt−α+1

∞∑
k=0

(at−α)k

k!Γ(−αk+ 2 −α)
dt

=

∞∑
k=0

ak

k!Γ(−αk+ 2 −α)

∫∞
0
e−stt−α−αk+1dt

=

∞∑
k=0

ak

k!Γ(−αk+ 2 −α)
L[t−α−αk+1]

=

∞∑
k=0

ak

k!Γ(−αk+ 2 −α)

Γ(−α−αk+ 2)
s−α−αk+2

=

∞∑
k=0

ak

k!s−α−αk+2 = sα−2
∞∑
k=0

(asα)k

k!
= sα−2eas

α

.

That completes the proof.

3. Main results

Theorem 3.1. Consider the Fractional Wave-Schrodinger equation

∂α

∂tα
φ(x, t) + i

∂2

∂x2φ(x, t) = 0 , i =
√
−1 , 1 < α 6 2 (3.1)

with the initial condition

φ(x, 0) = 0 , φt(x, 0) = δ(x),

where δ(x) is the dirac delta distribution. By the Laplace and Fourier transform we obtain that the fundamental
solution of the equation (3.1) is given by

φ(x, t) =
1
2

√
it−

α
2 +1W−α

2 , 2−α
2
(−
√
i|x|t−

α
2 ),

where Wα,β is the Wright function is defined by (2.2). If we put α = 2 in (3.1) the fractional Wave-Schrodinger
equation reduces to

∂2

∂t2
φ(x, t) + i

∂2

∂x2φ(x, t) = 0 (3.2)

and the solution of (3.2) is given by

φ(x, t) =
1
2

√
iW−1,1(−

√
i|x|t−1).
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Proof. By (3.1), we have

∂α

∂tα
φ(x, t) + i

∂2

∂x2φ(x, t) = 0. (3.3)

Taking Laplace transform on both sides of (3.3) and and using definition 2.1 we get

L
[ ∂α
∂tα

φ(x, t)
]
+ iL

[ ∂2

∂x2φ(x, t)
]
= 0,

sαφ(x, s) − sα−2δ(x) = −i
∂2

∂x2φ(x, s). (3.4)

Applying Fourier transform respect to variable x on both sides of (3.4), we obtain

sαFφ(x, s) − sα−2F[δ(x)] = −iF
∂2

∂x2φ(x, s),

sαφ(ω, s) − sα−2 = iω2φ(ω, s),

φ(ω, s) =
sα−2

sα + (−i)ω2 =
isα−2

isα +ω2 .

(3.5)

Applying inverse Fourier transform on both sides of (3.5), we obtain

φ(x, s) = F−1
[ isα−2

isα +ω2

]
=

√
isα−2e−|x|

√
is
α
2

2s
α
2

=
1
2

√
is
α
2 −2e−|x|

√
is
α
2 .

By Lemma 2.6, we obtain the solution of (3.1) as follows

φ(x, t) =
1
2

√
ir(−
√
i|x|, t) =

1
2

√
it−

α
2 +1W−α

2 ,2−α
2
(−
√
i|x|t−

α
2 ). (3.6)

If we put α = 2 in (3.1) and (3.6), respectively, the equation reduces to the Wave-Schrodinger equation

∂2

∂t2
φ(x, t) + i

∂2

∂x2φ(x, t) = 0, (3.7)

and the solution of (3.7) is given by

φ(x, t) =
1
2

√
iW−1,1(−

√
i|x|t−1).

This completes the proof.
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