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Abstract
In this note, we present a global asymptotic stability criterion for the fractional differential equations in triangular form. We

use the Caputo generalized fractional derivative in our investigations. In our note, we introduce a new procedure to study the
global asymptotic stability of the fractional differential equations.
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1. Introduction

The fractional differential equations attract many mathematicians due to its novelty. Many problems
related to the differential equations described by a specified derivative can be studied. The first problem
consists of proving the existence and the uniqueness of the solution of the fractional differential equations
[4]. The second problem is to solve the fractional differential equations. Many methods exist to solve the
fractional differential equations. We have homotopy perturbation method [16], Laplace transform method
[13], Fourier transformation method [14], Fourier sine transformation method [14], and many others. An
important problem related to the solution fractional differential equations is to analyze the behavior of
the analytical solutions. The issue is to study the stability and convergence. The stability analysis of the
fractional differential equations has received many investigations in literature [8, 9, 11, 13, 18]. For recent
investigations in stability analysis, see the following papers [3, 18]. The contribution of this note is to
propose a new procedure to analyze the global asymptotic stability of the fractional differential equations
described by the Caputo generalized fractional differential equations. The use of the classical condition
|arg (λ(A))| > απ

2 [13] is not trivial when the given fractional differential equation is in high dimension or
admit a nonlinear term. The issue is to rewrite the given fractional differential equation in its triangular
form (if possible). After decomposition, for each sub fractional differential equation, we study its stability.
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This note proposes a new method to provide the stability of the initial fractional differential equation.
In this note, we consider a fractional differential equation. We rewrite it in two-dimensional space. We
suppose the first sub fractional differential equation is fractional input stable [10, 12, 13]. And the second
sub fractional differential equation is global asymptotic stable [13]. We try to prove when we combine
fractional input stability and the global asymptotic stability; then the initial fractional differential equation
is globally asymptotically stable.

The note is structured as follows. In Section 2, we introduce the result of this note. In Section 3, we
illustrate our result by an example. In Section 4, we give an open problem for future works.

2. Result and discussion

This note is to give useful and helpful remarks on the global asymptotic stability of the fractional
differential equation in triangular form. Let’s recall some definitions and lemmas which will be used
to prove our result. Consider the differential equation described by the Caputo-Liouville generalized
fractional derivative defined by {

D
α,ρ
c x1 = f(x1, x2),

D
α,ρ
c x2 = f2(x2),

(2.1)

where xi ∈ R with 1 6 i 6 2. The Dα,ρ
c denotes the Caputo-Liouville generalized fractional derivative

[2, 5–7] represented by

(Dα,ρ
c f) (t) =

1
Γ(1 −α)

∫t
0

(
tρ − sρ

ρ

)−α

f ′(s)ds,

for all t > 0, where the order α ∈ (0, 1) and Γ(· · · ) is the gamma function. Let’s recall some fundamental
definitions and the comparison functions.

Definition 2.1 ([8]). The Mittag-Leffler function with two parameters is defined by the series

Eα,β (z) =

∞∑
k=0

zk

Γ(αk+β)
,

where the parameters α > 0, β ∈ R and z ∈ C. We recover the classical exponential function by letting
α = β = 1.

Definition 2.2 ([1, 13, 15, 17]). The class PD function denotes the set of all continuous functions α : R>0 →
R>0 satisfying α(0) = 0, and α(s) > 0 for all s > 0. A class K function is an increasing PD function. The
class K∞ represents the set of all unbounded K functions.

Definition 2.3 ([1, 13, 15, 17]). A continuous function β : R>0 ×R>0 → R>0 is said to be of class KL if
β(., t) ∈ K for any t > 0, and β(s, .) is non-increasing and tends to zero as its arguments tend to infinity.

Let’s recall the definitions of the stability notions which will be used in this section to prove our main
result.

Definition 2.4 ([13]). The fractional differential equation defined by Eq. (2.1) is said to be generalized
globally asymptotically stable if there exists a class KL function β such that for any initial condition ξ,
the following inequality holds

‖x(t, ξ)‖ 6 β(‖ξ‖ , tρ − tρ0 ),

where ‖.‖ represents the Euclidean norm.

Definition 2.5 ([11, 13]). The fractional differential equation defined by Eq. (2.1) is said to be generalized
fractional input stable if, for any input u ∈ Rm, there exist a class KL function β and a K∞ function γ,
such that for any initial condition ξ, its solution satisfies

‖x(t, ξ,u)‖ 6 β(‖ξ‖ , tρ − tρ0 ) + γ(‖u‖).
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We introduce the main result of this note. We found many properties related to the generalized
fractional input stability and generalized asymptotic stability in [11, 13].

Theorem 2.6. Consider the fractional differential equation defined by Dα,ρ
c x1 = f1(x1, x2) is fractional input stable

respecting the input ‖x2‖ and the fractional differential equation Dα,ρ
c x2 = f2(x2) is globally asymptotically stable.

Then the fractional differential equation defined by Eq. (2.1) is globally asymptotically stable.

Proof. From the global asymptotic stability of the fractional differential equation defined by Dα,ρ
c x1 =

f2(x2), we have limt→+∞ ‖x2(t)‖ = 0. From the fractional input stability of the fractional differential
equation defined byDα,ρ

c x1 = f1(x1, x2), we obtain the property converging-input converging state [12, 13].
From which it follows that limt→+∞ ‖x1(t)‖ = 0. Finally, the solution of the fractional differential equation
(2.1) is convergent. That is limt→+∞ ‖x(t)‖ = 0.

Secondly, from global asymptotic stability of the fractional differential equation defined by Dα,ρ
c x1 =

f2(x2), there exists a class KL function β2 such that for any initial condition ξ2, the following inequality
holds

‖x2(t)‖ 6 β2(‖ξ2‖ , tρ) 6 β2(‖ξ2‖ , 0). (2.2)

From the fractional input stability of the fractional differential equation defined by Dα,ρ
c x1 = f1(x1, x2),

there exist a class KL function β1 and a K∞ function γ, such that for any initial condition ξ1, its solution
satisfies

‖x1(t)‖ 6 β1(‖ξ1‖ , tρ) + γ(‖x2‖∞) 6 β1(‖ξ1‖ , 0) + .γ(‖β2(‖ξ‖ , 0)‖). (2.3)

From Eqs. (2.2) and (2.3), we have proved there exists ε such that ‖x(t)‖ 6 ε, thus the fractional differ-
ential equation (2.1) is stable. Combining the stability and the convergence, we conclude the fractional
differential equation (2.1) is globally asymptotically stable.

3. Illustration and discussion

Consider the fractional differential equation described by the Caputo generalized fractional derivative
defined by {

D
α,ρ
c x1 = −x1 + x2,

D
α,ρ
c x2 = −2x2, (3.1)

where x1, x2 ∈ R. The matrix associated with the fractional differential equation (3.1) is defined by

A =

(
−1 1
0 −2

)
.

The matrix A satisfies the condition |arg (λ(A))| > απ
2 . Thus, the fractional differential equation defined

by Eq. (3.1) is globally asymptotically stable. The utility of this note is, in many cases, we have noted
when the dimension of the fractional differential equation becomes too high n > 3, analyzing the global
asymptotic stability becomes not trivial. The issue is to rewrite the fractional differential equation in its
triangular form. We study the stability of each sub fractional differential equations and use our Theorem.

Let’s apply our Theorem. Firstly, the linear fractional differential equation Dα,ρ
c x2 = −2x2 is clearly

global asymptotic stability. Secondly, the fractional differential equation Dα,ρ
c x1 = −x1 + x2 is fractional

input stable when we consider ‖x2‖ as an exogenous input. To see the fractional input stability, we
determine the solution of the fractional differential equation D

α,ρ
c x1 = −x1 + x2. The solution of the

fractional differential equation Dα,ρ
c x1 = −x1 + x2 is given by the following expression [13]

x1(t) = ξEα

(
A

(
tρ

ρ

)α)
+

∫t
0

(
tρ − sρ

ρ

)α−1

Eα,α

(
A

(
tρ

ρ

)α)
x2(s)

ds

s1−ρ . (3.2)

Applying the norm, see the reasoning in [12, 13], we arrives to

‖x1(t)‖ 6 β1(‖ξ1‖ , tρ) +M ‖x2‖ ,
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where β1(‖ξ1‖ , tρ) = ξEα

(
A
(
tρ

ρ

)α)
and M is constant number obtained after calculation done on Eq.

(3.2). Clearly, we conclude the fractional differential equation Dα,ρ
c x1 = −x1 + x2 is fractional input stable.

From our Theorem 2.6, we conclude the fractional differential equation (3.1) is globally asymptotically
stable.

For another example when the Theorem 2.6 is useful, consider the fractional differential equation with
nonlinear term described by the Caputo generalized fractional derivative defined by{

D
α,ρ
c x1 = −x3

1 − x1 + 2x2,
D
α,ρ
c x2 = −x2, (3.3)

where x1, x2 ∈ R. Using the Lyapunov characterization method, one can prove the fractional differential
equation is globally asymptotically stable, but the proof is not trivial. Theorem 2.6 is easier to be applied.
We know D

α,ρ
c x2 = −x2 is global asymptotic stable, we can use the Lyapunov function defined by V(x2) =

x2
2

2 [13]. To see it, the derivative of the function V along the trajectories yields that

Dα,ρ
c V(x) 6 −x2

2 < 0.

From which the Lyapunov characterization gives the trivial solution of the fractional differential equation
D
α,ρ
c x2 = −x2 is globally asymptotically stable. The second fractional differential equation is fractional

input stable, we can see it by using again the Lyapunov function V(x1) =
x2

1
2 [11, 12]. We have

Dα,ρ
c V(x) 6 −x4

1 − x
2
1 + 2x1x2 6 −x4

1 − x
2
1 + x

2
1 + x

2
2 6 −x4

1 + x
2
2 6 −(1 − θ) x4

1 − θx
4
1 + x

2
2

with θ ∈ (0, 1). We observe

‖x1‖ >
[
‖x2‖
θ

]1/2

=⇒ Dα,ρ
c V(x) 6 −(1 − θ) x4

1.

From which we get the fractional input stability of the fractional differential equation defined byDα,ρ
c x1 =

−x3
1 − x1 + 2x2. Using Theorem 2.6, we conclude that the fractional differential equation (3.3) is GAS.

4. Open problem

We consider the fractional differential equation in two-dimensional spaces in Theorem 2.6. The future
direction of this work is to extend Theorem 2.6 to high dimensional spaces n > 3.
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