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Abstract
In this article, we have studied the convergence properties of double Sumudu transformation, and we presented the results

in the form of theorems on convergence, absolute convergence, and uniform convergence of Double Sumudu transformation.
The Double Sumudu transform of double Integral has also been discussed for integral evaluation. Finally, we have solved a
Volterra integro-partial differential equation by using Double Sumudu transformation.
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1. Introduction

Integral transforms are valuable for the simplification that they bring about, most often in dealing with
differential equation subject to particular boundary conditions. The proper choice of class of transforma-
tion usually makes it possible to convert not only the derivatives in an intractable differential equation
but also the boundary values into terms of an algebraic equation that can be easily solved. The solution
obtained is, of course, the transform of the solution of the original differential equation, and it is necessary
to invert this transform to complete the operation [1, 7, 8, 13].

Integral transform, is a mathematical operator that produces a new function f(y) by integrating the
product of an existing function F(x) and a so-called kernel function K(x,y) between suitable limits. The
process, which is called transformation, is symbolized by the equation f(y) =

∫
K(x,y)F(x)dx. Several

transforms are commonly named for the mathematicians who introduced them. In the Laplace transform,
the kernel is e−xy and the limits of integration are zero and plus infinity, in the Fourier transform, the
kernel is (2π)−1/2 e−ixy and the limits are minus and plus infinity. In [15], The Laplace transform of f is

F (s) = L (f (t)) =

∫∞
0
e−stf (t)dt = lim

n→∞
∫τ

0
e−stf (t)dt,
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whenever the limit exists (as a finite number). When it does, the above integral is said to converge. If
the limit does not exist, the integral is said to diverge and there is no Laplace transform defined for f.
The notation L(f) will also be used to denote the Laplace transform of f, and the integral is the ordinary
Riemann (improper) integral. The parameter s belongs to some domain on the real line or in the complex
plane.

In [8, 17] a new integral transform, called the Sumudu transform defined for functions of exponential
order. We consider functions in the set A, defined by

A = {f (t) |∃M, τ1, and /or τ2 > 0, such that |f (t)| < Me
| t|
τj , if t ∈ (−1)j × [0,∞)}.

For a given function in the set A, the constant M must be finite, while τ1 and τ2 need not simultane-
ously exist, and each may be infinite. Instead of being used as a power to the exponential as in the case
of the Laplace transform, the variable u in the Sumudu transform is used to factor the variable t in the
argument of the function f. Specifically, for f (t) in A, the Sumudu transform is defined by

G (u) = s [f (t)] =

{ ∫∞
0 f (ut) e

−tdt, 0 6 u < τ2,∫∞
0 f (ut) e

−tdt, −τ1 6 u < 0.

Belgacem presented the fundamental properties, analytical investigation of the Sumudu transform and
applications to integral equations. In [3, 7] Belgacem generalizes all existing Sumudu shifting theorems
and recurrence results, also presented applications to convolution type integral equations with focus on
production problems and inverse Sumudu transform of a singular function that satisfies the Tauberian
theorem, where the Dirac delta function fails.

In [2, 4], Laplace transform definition is implemented without resorting to Adomian decomposition
nor Homotopy perturbation methods. Authors also applied the natural transform to Maxwell’s equations
and obtained the transient electric and magnetic field solution. In [10], the Sumudu transform is applied
to arbitrary powers Dumont bimodular Jacobi elliptic functions for arbitrary powers. Belgacem [5] applied
the Sumudu transform to Bessel’s functions and equations. In [9], the Sumudu transform integral equation
is solved by continuous integration by parts, to obtain its definition for trigonometric functions.

In [6], Belgacem proposed ideas towards the mathematical investigations of the environmental fit-
ness effects on populations dispersal and persistence. In [12], Belgacem gives a sufficient condition to
guarantee the solution of the constant coefficient fractional differential equations by Sumudu transform.

Laplace and Sumudu transforms are convenient mathematical tools for solving differential equations.
Sumudu transform is defined by the following formula

S [f (t) ; v] =
1
v

∫∞
0
f (t) e−

t
v dt, v ∈ (−τ1, τ2).

The variable v in this transform is used to factorize the variable t in the argument of the function f. The
purpose of this study is to show the applicability of Sumudu transform and its efficiency in solving some
convergence theorems.

2. Convergence theorem of double Sumudu integral

In this section, we prove the convergence theorem of double Sumudu integral.

Lemma 2.1. If the integral
1
s

∫∞
0
e−

t
s φ(x, t)dt

converges at s = so, then the integral converges for s < so.
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Proof. Consider the set

α (x, t) =
1
so

∫t
0
e−

u
so φ (x,u)du , (o < t <∞) .

Clearly, α (x, 0) = 0 and limt→∞ α (x, t) exists because 1
s

∫∞
0 e

− t
s φ(x, t)dt converges at s = so.

By fundamental theorem of Calculus we have αt (x, t) = 1
so
e−

t
so φ (x, t) .

If we choose ε1 and R1 such that (0 < ε1 < R1), then

1
s

∫R1

ε1

e−
t
s φ(x, t)dt =

1
s

∫R1

ε1

e−
t
s soαt (x, t) e

t
so dt =

so

s

∫R1

ε1

e−( so−ssso
)t αt (x, t) dt.

By using integration by parts

=
so

s

{ ∣∣∣e−( so−ssso
)t α (x, t)

∣∣∣ R1

ε1
−

∫R1

ε1

α (x, t) e−(
so−s
sso

)t
[
−

(
so − s

sso

)]
dt

}

=
so

s

[
e−(

so−s
sso

)R1 α (x,R1) − e
−( so−ssso

)ε1 α (x, ε1 ) +

(
so − s

sso

) ∫R1

ε1

α (x, t) e−(
so−s
sso

)tdt

]
.

Now let ε1 → 0. Both terms on the right which depend on ε1 approach a limit and

1
s

∫R1

0
e−

t
s φ (x, t)dt =

so

s

[
e−(

so−s
sso

)R1 α (x,R1) +

(
so − s

sso

) ∫R1

0
α (x, t) e−(

so−s
sso

)tdt

]
.

Now let R1 →∞. If s < so, the first term on the right approaches zero and

1
s

∫∞
0
e−

t
s φ (x, t)dt =

(
so−s

s2

) ∫∞
0
e−(

so−s
sso

)t α (x, t)dt, for s < so. (2.1)

The given theorem is proved if the integral on the right converges.
Now by using the “Limit test” for convergence (see [18]), for this we have

lim
t→∞ t2e−(

so−s
sso

)tα (x, t) =
[

lim
t→∞ t2

e(
so−s
sso

)t

] [
lim
t→∞α (x, t)

]
= 0 >

[
lim
t→∞α (x, t)

]
= 0 = finite.

Therefore, the integral on right hand side of (2.1) converges for s < so.
Hence the given integral 1

s

∫∞
0 e

− t
s φ (x, t)dt converges for s < so.

Lemma 2.2. If integral

h (x , s) =
1
s

∫∞
0
e−

t
s φ (x, t)dt

converges for s 6 so and integral
1
p

∫∞
0
e−

x
p h (x, s)dx (2.2)

converges at p = po, then the integral (2.2) converges for p < po.

Proof. Let

β (x, s) =
1
po

∫x
0
e−

u
po h (u, s)du, 0 < x <∞. (2.3)

Therefore β (0, s) = 0 and limx→∞ β (x, s) exists because 1
p

∫∞
0 e

− x
p h (x, s)dt converges at p =po.
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By using fundamental theorem of Calculus, equation (2.3) can be written as βx (x, s)= 1
po
e−

x
po h (x, s) .

Choose ε2 and R2 and so that 0 < ε2<R2,

1
p

∫R2

ε2

e−
x
p h (x, s)dx =

po

p

∫R2

ε2

e−(po−pppo
)xβx (x, s)dx

=
po

p
[ e−(po−pppo

)R2β (R2, s)−e−(
po−p
ppo

)ε2β (ε2, s)+
(
po−p

ppo

) ∫R2

ε2

e−(
po−p
ppo

)xβ (x, s)dx] .

Now let ε2 →0.

1
p

∫R2

0
e−

x
p h (x, s)dx =

po

p

[
e−(

po−p
ppo

)R2β (R2, s)+
(
po−p

ppo

) ∫R2

0
e−(

po−p
ppo

)xβ (x, s)dx

]
.

Now let R2→∞. If s < so , the first term on the right approaches zero,

1
p

∫∞
0
e−

x
p h (x, s)dx =

(
po−p

p2

) ∫∞
0
e−(

po−p
ppo

)xβ (x, s)dx, for p < po.

The given theorem is proved if the integral on the right converges. Now by using the Limit test for
convergence (see [18]), we consider

lim
x→∞ x2e−(

po−p
ppo

)xβ (x, t)=
[

lim
x→∞ x2

e−(
po−p
ppo

)x

] [
limβ
x→∞ (x, t)

]
= 0>

[
lim
x→∞β (x, t)

]
= 0 = finite.

Therefore, the integral on right hand side of (2.2) converges for p < po.
Hence the given integral 1

p

∫∞
0 e

− x
p h (x, s)dx converges for < po.

Theorem 2.3. Let φ(x, t) be a function of two variables continuous in the positive quadrant of the xt-plane. If the
integral

1
ps

∫∞
0

∫∞
0
e−

x
p−

t
s φ(x, t)dxdt (2.4)

converges at p = po, s = so, then integral converges for p < po, s < so.

Proof.

1
ps

∫∞
0

∫∞
0
e−

x
p−

t
s φ (x, t)dxdt =

1
p

∫∞
0
e−

x
p {

1
s

∫∞
0
e−

t
s φ (x, t)dt}dx =

1
p

∫∞
0
e−

x
ph (x, t)dx, (2.5)

where h(x , s) = 1
s

∫∞
0 e

− t
sφ (x, t)dt. By Lemma 2.1, integral 1

s

∫∞
0 e

− t
sφ (x, t)dt converges for s < so.

Also by Lemma 2.2, integral 1
p

∫∞
0 e

− x
p h (x, s)dx converges for p < po. Therefore, the integral in RHS of

(2.5) converges for p < po, s < so.
Hence the integral 1

ps

∫∞
0

∫∞
0 e

− x
p−

t
s φ (x, t)dxdt converges for p < po, s < so. This completes the

proof of the Theorem 2.3.

Corollary 2.4. If the integral 1
ps

∫∞
0

∫∞
0 e

− x
p−

t
s φ(x, t)dxdt diverges at p = po and s = so, then the integral

diverges at p < po, s < so.

Corollary 2.5. The region of the convergence of the integral 1
ps

∫∞
0

∫∞
0 e

− x
p−

t
s φ(x, t)dxdt is the positive quadrant

of the xt-plane.

Now we prove absolute convergence of integral.
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Theorem 2.6. If the integral (2.4) converges absolutely at p = po, s = so, then integral (2.4) converges absolutely
for p 6 po, s 6 so.

Proof. We know that e−
x
po

− t
so | φ (x, t) | 6 e−

x
p−

t
s for (p 6 po <∞ , s 6 so <∞). Therefore

1
sopo

∫∞
0

∫∞
0
e−

x
po

− t
so | φ (x, t) |dtdx 6

1
ps

∫∞
0

∫∞
0
e−

x
p−

t
s | φ (x, t) |dtdx.

Form given hypothesis, 1
ps

∫∞
0

∫∞
0 e

− x
p−

t
s | φ (x, t) |dtdx converges. Hence, we have

1
sopo

∫∞
0

∫∞
0
e−

x
po

− t
so | φ (x, t) |dtdx

converges for (p 6 po s 6 so). Therefore the integral (2.4) converges absolutely for (p 6 po s 6 so).

3. Uniform convergence

In this section we prove the uniform convergence of double Sumudu transform.

Lemma 3.1. If g (x, t) = 1
so

∫t
0 e

− v
so f(x, v)dv is bounded on [ 0,∞), then the Sumudu transform of f with

respect to s converges uniformly on [s,∞) if s < so.

Proof. If 0 6 r 6 r1, then consider,

1
s

∫r1

r

e−
t
s f (x, t)dt =

1
s

∫r1

r

e−(
so−s
sso

)t e−
t
so f (x, t)dt =

so

s

∫r1

r

e−(
so−s
sso

)t gt (x, t)dt.

Using integration by parts

=
so

s

[
e−(

so−s
sso

)r1g (x, r1) − e
−( so−ssso

)rg (x, r) +
(
so − s

sso

) ∫r1

r

e−(
so−s
sso

)t g (x, t)dt.
]

Therefore, if | g(x, t) | 6M, then∣∣∣∣1s
∫r1

r

e−
t
s f (x, t)dt

∣∣∣∣ 6M{e−( so−ssso
)r1 + e−(

so−s
sso

)r +

(
so − s

sso

) ∫r1

r

e−(
so−s
sso

)tdt

}
=M

{
e−(

so−s
sso

)r1 + e−(
so−s
sso

)r − e−(
so−s
sso

)r1 + e−(
so−s
sso

)r
}

= 2Me−(
so−s
sso

)r for s < so.

By Cauchy criterion for uniform convergence (see [16]), 1
s

∫r1
r e

− t
s f (x, t)dt converges uniformly on [s,∞)

if s < so. Hence, Sumudu transform of f with respect to s converges uniformly on [s,∞) if s < so.

Lemma 3.2. If the integral g (x, s) = 1
s

∫∞
0 e

− t
s f (x, t)dt converges uniformly on [s,∞) if s < so and α (x, s) =

1
po

∫x
0 e

− u
po g (u, s)du is bounded on [0,∞), then the Sumudu transform of f with respect to s converges uniformly

on [p,∞) if p < po.

Proof. Proof is similar to Lemma 3.1.

Theorem 3.3. If f(x, t) is continuous on [0,∞)× [0,∞) and

H (x , t) =
1

poso

∫x
0

∫t
0
e−

u
po

− v
so f (u, v)dudv

is bounded on [0,∞)×[0,∞), then the double of Sumudu transform of f converges uniformly on [p,∞)×[s,∞) if
p < po, s < so.
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Proof.

H (x , t) =
1

poso

∫x
0

∫t
0
e−

u
po

− v
so f (u, v)dudv

=
1
po

∫x
0
e−

u
po

{
1
so

∫t
0
e−

v
so f (u, v)dv

}
du =

1
po

∫x
0
e−

u
po g(u, t) du,

where g (u, t) = 1
so

∫t
0 e

− v
so f (u, v)dv is bounded on [0,∞).

By Lemma 3.1, Sumudu transform of f with respect to s converges uniformly on [s,∞) if s < so. Also
by Lemma 3.2, Sumudu transform of g with respect to p converges uniformly on [p,∞) if p < po . Hence
double Sumudu transform of f converges uniformly on [p,∞) × [s,∞) if p < po, s < so.

We now prove the differentiability of double Sumudu transform.

Lemma 3.4. If g(x, t) = 1
so

∫t
0 e

− v
so f (x, v)dv is bounded on [ 0,∞), then the Sumudu transform of f is infinitely

differentiable with respect to s on [ s,∞) if s < so with

∂n

∂sn
f̄ (x, s) = (−1)n

1
s

∫∞
0
e−

t
s tnf (x, t)dt. (3.1)

Proof. First of all, we will prove that the integrals

In (x, s) = (−1)n
1
s

∫∞
0
e−

t
s tnf (x, t)dt, n = 0, 1, 2, 3, . . ..

all converge uniformly on [s,∞) if s < so and if 0 6 r 6 r1, then

1
s

∫r1

r

e−
t
s tnf (x, t)dt =

so

s

∫r1

r

e−(
so−s
sso

)ttngt (x, t)dt

=
so

s
[e−(

so−s
sso

)r1r1
ng (x, r1) − e

−( so−ssso
)rrng (x, r) −

∫r1

r

{
d

dt
e−(

so−s
sso

)t tn} g (x, t)dt].

Therefore, if |g(x, t)|6M <∞ on [0,∞) , then∣∣∣∣ 1
s

∫r1

r

e−
t
s tnf (x, t)dt

∣∣∣∣ 6M{e−( so−ssso
)r1rn1 + e−(

so−s
sso

)rrn − e−(
so−s
sso

)r1rn1 + e−(
so−s
sso

)rrn
}

,∣∣∣∣ 1
s

∫r1

r

e−
t
s tnf (x, t)dt

∣∣∣∣ 6 2Me−(
so−s
sso

)rrn for 0 6 r 6 r1.

By Cauchy criterion for uniform convergence, see [16], In (x, s) converges uniformly on [s,∞) if s <
so. Now, using [16] and induction proof, we have (3.1). That is Sumudu transform of f is infinitely
differentiable with respect to s on [s,∞) if s < so.

Lemma 3.5. If the integral ∅ (x, s) = 1
s

∫∞
0 e

− t
s tnf (x, t)dt converges uniformly on [s,∞) if s < so and

h (x, s) = 1
po

∫x
0 e

− u
po ∅ (x, s)dx is bounded on [0,∞), then the Sumudu transform of ∅ is infinitely differentiable

with respect to p on (p,∞) if p < po, with

∂m

∂sm
∅ (x, s) = (−1)m

1
s

∫∞
0
e−

t
s tm∅ (x, s)dx.

Proof. Proof is similar to Lemma 3.4.

Theorem 3.6. If f(x, t) is continuous on [0,∞)×[0,∞) and

H (x , t) =
1

poso

∫x
0

∫t
0
e−

u
po

− v
so f (u, v)dudv

is bounded on [0,∞)×[0,∞), then the double Sumudu transform of f is infinitely differentiable with respect to p
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and s on [p,∞)× [s,∞) if p < po, s < so, with

∂m+n

∂pm∂sn
f̄ (p, s) = (−1)m+n 1

ps

∫∞
0

∫∞
0
e−

x
p−

t
s xmtn f(x , t )dx dt.

Proof.

H (x , t) =
1

poso

∫x
0

∫t
0
e−

u
po

− v
so f (u, v)dudv

=
1
po

∫x
o

e−
u
po {

1
so

∫t
0
e−

v
so f (u, v)dv}du =

1
po

∫x
o

e−
u
po g (u, t)du,

where g (u, t) = 1
so

∫t
0 e

− v
so f (u, v)dv is bounded on [0,∞).

By Lemma 3.4, Sumudu transform of f is infinitely differentiable with respect to s on [s,∞) if s < so.
Also by Lemma 3.5, Sumudu transform of g is infinitely differentiable with respect to p on [p,∞) if p < po.
Hence double Sumudu transform of f is infinitely differentiable with respect to p and s on [p,∞)×[s,∞)
if s < so,p < po.

4. Double Sumudu transform of double integral

We now find the double Sumudu transform of double integral.

Theorem 4.1. If SxSt {f (x, t)} = f̄(p, s) and

g (x, t) =
∫x

0

∫t
0
f (u, v)dvdu, (4.1)

then

SxSt

{∫x
0

∫t
0
f (u, v)dvdu

}
= psf̄ (p, s) .

Proof. If we denote h (x, t) =
∫t

0 f (x, v)dv, by using fundamental theorem of calculus

ht (x, t) = f (x, t) . (4.2)

Since
h (x, 0) = 0.

Taking double Sumudu transform of equation (4.2), we get

h̄ (p, s) = s f̄ (p, s) . (4.3)

From (4.1), g (x, t) =
∫x

0 h(u, t) du,

gx (x, t) = h (x, t) , g (0, t) = 0, ḡ(p, s) = p h̄(p, s).

Now by using (4.3) and (4.1), we obtain

SxSt

{∫x
0

∫t
0
f (u, v)dvdu

}
= psf̄ (p, s) .

5. Application of double Sumudu transform in Volterra integro-partial differential equation

We use the double Sumudu transform to solve the problem which is already solved in [14] using
differential transform method.
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Example 5.1. Consider the following Volterra integro partial differential equation,

δu(x,y)
δx

+
δu(x,y)
δy

= −1 + ex + ey + ex+y +

∫x
0

∫y
0
u (r, t)drdt, (5.1)

subject to the initial conditions as:

u (x, 0) = ex and u (0,y) = ey. (5.2)

Applying double Sumudu transform of equation (5.1), we get

1
p
ū (p, s) −

1
p
ū (0, s) +

1
s
ū (p, s) −

1
s
ū(p, 0) = −1 +

1
1 − p

+
1

1 − s
+

1
(1 − s)(1 − p)

+ psū (p, s) . (5.3)

The single Sumudu transforms of equation (5.2) are

ū (p, 0) =
1

(1 − p)
and u (0, s) =

1
(1 − s)

. (5.4)

Substituting (5.4) in (5.3) and simplifying, we obtain

1
p
u (p, s) −

1
p(1 − s)

+
1
s
u (p, s) −

1
s(1 − p)

= −1 +
1

1 − s
+

1
1 − p

+
1

(1 − s) (1 − p)
+ psu(p, s).

So ū (p, s) = 1
(1−s)(1−p) . Now by using double inverse Sumudu transform, we obtain solution of (5.1) as

u (x,y) = ex+y.

6. Conclusion

In this paper, we presented convergence, absolute convergence and uniform convergence of double
Sumudu transform. Besides these, we obtained double Sumudu transform of double integral and use it
to solve Volterra integro-partial differential equation.
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