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Abstract
In this paper, we have found the solution of second-order delay differential equations of retarded type with multiple delays.

As well as developing an approximation for finding characteristic roots for such delay differential equations via the method of
spectral tau which depends on the basis mixed Fourier basis or shifted Chebyshev polynomials.
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1. Introduction

Delay differential equations, were initially introduced as works in the eighteenth century, but a regular
study of equations contain a deviating argument appeared only in the twentieth century in a relationship
with the applied sciences. The differential equations with a deviating argument arise out of applications
in various aspects of knowledge such as the problems related with combustion in the rocket motion,
the control and optimization, the problem of long-range planning in the economics, the systems of self-
oscillating, many problems in biology, and science and technology. At present, this theory is one of the
most important and rapid growth in the branches of mathematics [7]. The modelling of many problems in
terms of delay differential equations has been developed in a vast range, especially systems of electricity
and mechanics and interest in DDEs have continued to increase because it has become very important
in the area of biomedical modelling (physiological and hormonal control systems) [13]. During the little
years ago, the topic of differential equations with deviating arguments has been expanded extensively.
It has become an essential part of the works that are dealing with certain applications, for example,
viscoelasticity, distributed networks, heat flow, the interaction of species, learning models, and physiology
[3]. Many researchers worked on finding analytical solutions and others worked on finding numerical
solutions with studying the stability of oscillation for delay differential equations [1, 2, 6, 9–12, 14].
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The study of the stability of delay differential equations where the delays are multiple has been con-
cerned with converting the delay differential equation to a partial differential equation (PDE) of boundary
conditions. Then, the PDE can be approximated via spatial discretization methods to an ordinary differ-
ential equation (ODE), i.e., DDE with initial conditions can be converted to a DDE with mixed conditions
initial and boundary, i.e., (IBVP) for the advection equation [4, 8]. Vyasarayani et al. developed approx-
imations to find the characteristic roots of delay differential equations of the first order via the spectral
methods [15]. In the present paper, the spectral-tau approach is used for finding the solution of a retarded
type delay differential equation of the second order with multiple delays and the characteristic roots of
that delay differential equation are given.

Now, we shall consider an nth order retarded dynamical system when the time delay T is a constant,
the governing equation can be written as follows

n∑
i=0

ai
di

dti
y(t) +

m∑
i=0

bi
di

dti
y(t− T) = 0,

such that ai,bi, are constants, an 6= 0, n > m and T > 0 is a nonnegative [9].

2. Solving a retarded functional differential equation of second order via spectral-tau method

We want to solve the second order delay differential equation with delays τ1, τ2, · · · , τm

ÿ(t) + bẏ(t) +

m∑
j=1

bjẏ(t− τj) = 0, τj > 0, (2.1)

with the initial delay condition:
y(t) = φ(t), − τ 6 t 6 0, (2.2)

where τ = max{τ1, τ2, · · · , τm}. By using the known shift time [15]

u(p, t) = y(t+ p), p ∈ [−τ, 0].

The IVP (2.1)–(2.2) can be expressed by an IBVP of the form

∂2u(p, t)
∂t2

=
∂2u(p, t)
∂p∂t

, − τ 6 p 6 0, (2.3)

∂2u(p, t)
∂t2

|p=0 = −b
∂u(0, t)
∂t

−

m∑
j=1

bj
∂u(−τj, t)

∂t
, (2.4)

u(p, 0) = ϕ(p), − τ 6 p 6 0. (2.5)

Also, using the spectral-tau approach, we suppose that there is a solution for the partial differential
equation (2.3) can be in the following formula

u(p, t) =
∞∑
i=1

αi(p)δi(t),

such that αi(p) will be known functions which are called basis functions and δi(t) are unknown functions
which are called time dependent coordinates. For workable causes, we take the above summation at N of
the terms as follows

u(p, t) = α(p)Tδ(t), (2.6)
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such that

α(p) = [α1(p),α2(p),α3(p), · · · ,αN(p)]T and δ(t) = [δ1(t), δ2(t), δ3(t), · · · , δN(t)]T .

If we substitute the above series equation in (2.3) gives

α(p)T δ̈(t) = α
′
(p)T δ̇(t).

By multiplying both sides with α(p), then integrating with respect to the variable p from −τ to 0 yields∫ 0

−τ
α(p)α(p)Tdp δ̈(t) =

∫ 0

−τ
α(p)α

′
(p)Tdp δ̇(t). (2.7)

Equation (2.7) becomes
Gδ̈(t) = Hδ̇(t), (2.8)

where

G =

∫ 0

−τ
α(p)α(p)Tdp,

H =

∫ 0

−τ
α(p)α

′
(p)Tdp.

Substituting (2.6) in (2.4) gives the scalar equation

α(0)T δ̈(t) = [−bα(0)T −
m∑
j=1

bjα(−τj)
T ]δ̇(t). (2.9)

It is clear that the two equations (2.8) and (2.9) produce N+ 1 equations. To get a solvable system we
respect the last equation of the system (2.8) and add (2.9) to construct

Utauδ̈(t) = Vtauδ̇(t), (2.10)

where

Utau =

[
G

α(0)T

]
, (2.11)

Vtau =

[
H

−bα(0)T −
∑m
j=1 bjα(−τj)

T

]
, (2.12)

and the matrices G and H yield by neglecting the n-th row of the matrix G and the n-th row of the matrix
H respectively.

Now, we reduce the order of N×N system (2.10) of second order ODEs to 2N× 2N system of first
order ODEs by the assumption

δ̇(t) = Q(t),

which gives the following 2N× 2N system of ODEs of the first order[
δ̇(t)
Q̇(t)

]
=M

[
δ(t)
Q(t)

]
, (2.13)

where

M =

[
0 IN
0 U−1

tauV
−1
tau

]
, (2.14)

such that 0 denotes the matrix with entires zeros, IN represents N×N identity matrix, Utau is a nonsin-
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gular matrix defined in (2.11) and Vtau is defined in (2.12). The initial condition for (2.10) is

δ(0) = U−1
tau

∫0
−τ α(p)ϕ(p)dp.

It is clear that the solution of (2.1) becomes

y(t) = u(0, t) = α(0)Tδ(t).

We note that the delay differential equation (2.1) has approximated to the system (2.10). Substituting
y(t) = eλt in (2.1) gives the characteristic equation for (2.1) as

D(λ) = λ+ b+
∑m
j=1 be

−λτj = 0.

The spectrum of (2.1) represents the roots of the characteristic equation, i.e.,

Sexact = {λi|D(λi) = 0, Re(λ1) > Re(λ2) > · · · }.

The spectrum of (2.1) which is obtained by finding the eigenvalues of the 2N× 2N system equation (2.13)
which is defined as

Ŝtau = {λ̂i : det(M− λ̂I) = 0, Re(λ̂1) > Re(λ̂2) > · · · }, (2.15)

where M is 2N× 2N matrix and defined as in (2.14).
As we know that choosing basis functions α(p) in (2.6) make a great effect in convergence or diver-

gence of the eigenvalues. Therefore, we shall deal with the following basis functions: mixed Fourier basis
[16]:

α(p) = [1,p, sin(
π

τ
p), sin(2

π

τ
p), · · · ]τ, (2.16)

and shifted Chebyshev polynomials [5]

α1(p) = 1, α2(p) = 1 +
2p
τ

, αi(p) = 2α2(p)αi−1(p) −αi−2(p), i = 3, 4, · · · . (2.17)

3. Explained examples

Example 3.1. Consider the following IVP of the second order

ÿ(t) + ẏ(t) + ẏ(t− 5) = 0, (3.1)

with the initial delay condition
y(t) = ϕ(t), − 5 6 t 6 0. (3.2)

We can find the exact characteristic roots of (3.1) using Lambert W function as

λk =
1
5
Wk(−5e5) − 1, k = 0,∓1,∓2, · · · , (3.3)

where Wk, k = 0,∓1,∓2, · · · are branches of Lambert W function.
Now, we consider that u(p, t) = y(t + p), p ∈ [−5, 0]. The initial value problem (3.1)–(3.2) can be

expressed by the following initial boundary value problem, by using the equations (2.3), (2.4), (2.5), as
follows

∂2u(p, t)
∂t2

=
∂2u(p, t)
∂p∂t

, − 5 6 p 6 0,

∂2u(p, t)
∂t2

|p=0 = −
∂u(0, t)
∂t

−
∂u(−5, t)

∂t
,

u(p, 0) = ϕ(p), − 5 6 p 6 0,

such that
u(p, t) = α(p)Tδ(t),
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where

α(p) =



α1(p)
α2(p)

.

.

.
α20(p)

 , δ(t) =



δ1(t)
δ2(t)

.

.

.
δ20(t)

 ,

and α(p) is either mixed Fourier basis or shifted Chebyshev polynomials which are defined as in (2.16)
and (2.17) respectively.

Figure 1 shows the exact characteristic roots Stau of the DDE (3.1) computed form (3.3), and the
approximated characteristic roots Ŝtau of the DDE (3.1) computed form (2.15) with respect to mixed
Fourier basis and shifted Chebyshev polynomials when N = 20.

Figure 1: The exact Sexact and approximated Stau characteristic roots of the DDE (3.1) when N=20.

Example 3.2. Consider the following IVP of the second order

ÿ(t) + 3ẏ(t) − 2ẏ(t− 0.2) + ẏ(t− 0.4) + 2ẏ(t− 0.8) + 2ẏ(t− 1) − ẏ(t− 1.2)
− ẏ(t− 1.4) + 3ẏ(t− 1.6) + ẏ(t− 1.8) + ẏ(t− 2) + ẏ(t− 2.3) − ẏ(t− 2.6)

+ ẏ(t− 2.9) − ẏ(t− 3) − 5ẏ(t− 3.5) = 0,
(3.4)

with the initial delay condition
y(t) = ϕ(t), − 3.5 6 t 6 0. (3.5)

Now, we consider that u(p, t) = y(t+ p), p ∈ [−3.5, 0].
Using (2.3), (2.4), (2.5), the initial value problem (3.4)–(3.5) can be expressed by an IBVP of the formu-

lation

∂2u(p, t)
∂t2

=
∂2u(p, t)
∂p∂t

, − 3.5 6 p 6 0,

∂2u(p, t)
∂t2

|p=0 =− 3
∂u(0, t)
∂t

+ 2
∂u(−0.2, t)

∂t
−
∂u(−0.4, t)

∂t
− 2

∂u(−0.8, t)
∂t

− 2
∂u(−1, t)

∂t
+
∂u(−1.2, t)

∂t
+
∂u(−1.4, t)

∂t
− 3

∂u(−1.6, t)
∂t

−
∂u(−1.8, t)

∂t
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−
∂u(−2, t)

∂t
−
∂u(−2.3, t)

∂t
+
∂u(−2.6, t)

∂t
−
∂u(−2.9, t)

∂t
+
∂u(−3, t)

∂t

+ 5
∂u(−3.5, t)

∂t
,

u(p, 0) = ϕ(p), − 3.5 6 p 6 0,

such that
u(p, t) = α(p)Tδ(t),

where

α(p) =



α1(p)
α2(p)

.

.

.
α20(p)

, δ(t) =



δ1(t)
δ2(t)

.

.

.
δ20(t)

,

and α(p) is either mixed Fourier basis or shifted Chebyshev basis which are defined as in (2.16) and (2.17)
respectively.

Figure 2 shows the approximated characteristic roots Ŝtau of the DDE (3.4) computed form (2.15) with
respect to mixed Fourier basis and shifted Chebyshev basis when N = 20.

Figure 2: The approximated characteristic roots Ŝtau of the DDE (3.4) by mixed Fourier basis and shifted Chebyshev polynomials
when N=20.

4. Conclusions

We have introduced an approximation for the characteristic roots of a retarded functional differential
equation with multiple delays when two basic functions that are: mixed Fourier basis and shifted Cheby-
shev polynomials. We noted that the choice of basis functions plays a substantial effect in convergence
and divergence of the resulting eigenvalues because they effect on the singularity or non-singularity of
the matrix Utau.
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