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Abstract
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1. Introduction

Nonparametric aging classes of life distributions have been found to be useful in reliability analysis,
engineering applications, maintenance policies, economics, biometry, queuing theory and many other
fields. There are many situations where a continuous time is inappropriate for describing the lifetime of
devices and other systems. For example, the life time of many devices in industry such as switches and
mechanical tools, depends essentially on the number of times they are turned on and off or the number
of shocks they receive. In such cases, the time to failure is often more appropriately represented by the
number of times they are used before they fail, which is a discrete random variable.

Discrete lifetimes usually arise through grouping or finite-precision measurement of continuous time
phenomena. Let X be a non-negative discrete random variable representing the lifetime of the unit.
Without loss of generality, it is assumed that N is a support of X. The probability mass function (p.m.f)
is given by f (x) = Pr {X = x} , x = 0, 1, 2, . . . the cumulative distribution function F of X satisfies f (x) =
Pr {X 6 x} =

∑x
i=0 = f (i) for all x ∈ N where N = {0, 1, . . . }. The distribution of counting random variable

is called a discrete life distribution. In particular, if f(0) = Pr(X = 0) = 0, or a counting random variable
X has a support on N+ = {1, 2, . . . }, we say that the discrete distribution is zero-truncated. Moreover,
N− = {−1, 0, 1, . . . }.

Similar to continuous distributions, discrete distribution can also be classified by the properties of
failure rates, mean residual lifetimes, survival function. These classes of discrete distribution aging have
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been used extensively in different fields of statistics and probability such insurance, finance, reliability,
survival analysis, and others. See, for example, [5, 8, 10, 11, 13, 14, 16–18]. Some commonly used classes
of discrete distributions include the classes of discrete decreasing failure rate (D-DFR), discrete decreasing
failure rate average (D-DFRA), discrete new worse than used (D-NWU), discrete increasing mean residual
life (D-IMRL), discrete harmonic new worse than used in expectation (D-HNWUE), and their dual ones
including the classes of discrete increasing failure rate(D-IFR), discrete increasing failure rate average
(D-IFRA), discrete new better than used (D-NBU), discrete decreasing mean residual life (D-DMRL), and
discrete harmonic new better than used in expectation (D-HNBUE).

[4] defined a continuous random variable X (or its distribution function F) to be generalized harmonic
new better than used in expectation if∫∞

0

∫∞
t

F̄ (x)dx 6 µ2 if 0 < µ <∞.

Also, [15] defined a continuous random variable X (or its distribution function F) to be new better than
used of second order (NBU (2)) if∫x

0
F̄ (t+ y)dy 6 F̄(t)

∫x
0

∫∞
x

F̄(y)dydx for all x, t > 0.

[3] defined the class of new better than used in increasing convex average order (NBUCA). This class is
requiring the distribution function F of a random variable X to satisfy.∫∞

0

∫∞
x

F̄ (u+ t)dudt 6 F̄(t)
∫∞

0

∫∞
x

F̄(u)dudx for all t > 0.

[1] defined the class of new better than used in convex ordering of second order (NBUC2). Preser-
vation properties under convolution, random maxima, mixing and formation of coherent structures are
established. Stochastic comparisons of the excess lifetime when the inter-arrival times belong to the
NBUC(2) class are developed. Some applications of Poisson shock models and a test of exponentiality
against NBUC (2) alternative are presented. This class is requiring the distribution function F of a random
variable X to satisfy ∫∞

z

∫∞
x

F̄ (u+ t)dudx 6 F̄(t)
∫∞
z

∫∞
x

F̄(u)dudx for all t, z > 0.

The authors have demonstrated their usefulness in reliability applications as well as in other fields.

2. Basic definitions

Most of the nonparametric discrete classes of distributions that are commonly found in the reliability
literature are based on some notion of aging. In this section we present the definitions of some classes of
discrete distributions, which are used in the sequel.

Definition 2.1. Let X and Y be two non-negative random variables with distribution functions F(x) and
G(y), and survival functions F̄(x) and Ḡ(x), respectively. X is said to be smaller than Y in the

1. stochastic ordering, denoted by X 6st Y if

F̄(x) 6 Ḡ(y) for all x > 0;

2. discrete increasing convex order, denoted byX 6dicx Y if

∞∑
i=x

F̄(i) 6
∞∑
i=y

Ḡ(i) for all i ∈ N;
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3. discrete increasing convex average order, denoted by X 6dicxa Y if

∞∑
x=0

∞∑
i=x

F̄(i) 6
∞∑
y=0

∞∑
i=y

Ḡ(i) for all i ∈ N;

4. discrete increasing concave order, denoted by X 6dicv Y if

x∑
i=0

F̄(i) 6
y∑
i=0

Ḡ(i) for all i ∈ N.

Definition 2.2. A discrete distribution F is called discrete new better than used in convex ordering (D-
NBUC) (or discrete new worse than used in convex ordering (D-NWUC)) if

x∑
i=x+y

F̄(i) 6 F̄(x)
∞∑
i=y

F̄(j) for all x,y ∈ N.

Definition 2.3. An integer valued random variable X (or its cdf F) is said to be discrete new better than
used in convex average order (D-NBUCA) if

∞∑
k=0

∞∑
i=k

F̄(i) 6 F̄(j)
∞∑
k=0

∞∑
i=0

F̄(i) for all j ∈ N.

Or equivalently ∞∑
y=0

∞∑
i=0

F̄(x+ y+ i) 6
∞∑
y=0

F̄(y)

∞∑
i=0

F̄(x+ i).

Definition 2.4. An integer valued random variable X (or its cdf F) F is said to be discrete new better than
used in second order (D-NBU (2)) if

k∑
j=0

F̄(i+ j) 6 F̄(i)
k∑
j=0

F̄(j) for all i,k ∈ N.

Definition 2.5. A discrete distribution F with finite mean µ is called discrete new better than used in
expectation (D-NBUE) if for all x ∈ N

∞∑
i=x

F̄(i) 6 F̄(x)
∞∑
j=0

F̄(j) for all x ∈ N.

Or equivalently ∞∑
i=x

F̄(i) 6 µF̄(x).

Definition 2.6. A discrete distribution F with expectation
∑∞
i=0 F̄(i) = µ is called discrete generalized

harmonic new better than used in expectation (D-GHNBUE) if for all x ∈ N.

∞∑
k=0

∞∑
j=k

F̄j 6 µ
2.

Theorem 2.7. If X ∈ D−NBU(2), then X ∈ D−NBUE.
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Proof. Since X is D-NBU(2)

F̄(i)

k∑
j=0

F̄(j) >
k∑
j=0

F̄(i+ j) for all k ∈ N. (2.1)

Letting k tending to infinity in (2.1), one gets

F̄(i)

∞∑
j=0

F̄(j) >
∞∑
j=0

F̄(i+ j),

or equivalently

µF̄(i) >
∞∑
j=0

F̄(i+ j),

which is D-NBUE.

3. Preservation properties

In this section, commonly used properties of aging classes, such as convolution, closure under forma-
tion of parallel systems, and mixing (see, e.g., [1, 3, 5, 9, 13]) are derived for D-NBU(2), D-NBUCA, and
D-GHNWUE classes.

3.1. Convolutions

In the next theorems, we establish the closure property of D-NBU(2), D-NBUCA, and D-GHNWUE
classes under the convolution.

Theorem 3.1. Suppose thatF1 and F2 are two independent D-NBU(2) life distributions. Then their convolution is
also D-NBU(2).

Proof.

x∑
s=0

F̄(i+ s) =

x∑
k=0

∞∑
s=0

F̄(t+ s− k)dF2(k),

=

{
x∑
s=0

t∑
k=0

F̄1(t+ s− k)dF2(k)

x∑
s=0

∞∑
k=t

F̄1(t+ s− k)dF2(k)

}

=

{
t∑
k=0

[
x∑
s=0

F̄1(t+ s− k)

]
dF2(k) +

x∑
s=0

[ ∞∑
ν=0

F̄1(s− ν)dF2(ν+ t)

]}
= A1 +A2,

(3.1)

where

A1 =

t∑
k=0

F̄1(t− k)

x∑
s=0

dF2(k) = [F(t) − F2(t)]

x∑
k=0

F̄1(k), (3.2)

and

A2 6
x∑
s=0

[
F̄1(t)F̄2(t) +

∞∑
s=0

∞∑
ν=0

F̄2(ν+ t)dνF̄1(s− ν)

]

= F̄2(t)

x∑
k=0

F̄1(k) +

x∑
s=0

[
s∑
ν=0

F̄2(ν+ t)dνF̄1(s− ν)

]
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= ψ+

x∑
s=0

[
s∑
k=0

F̄2(t+ s− k)dF1(k)

]

= ψ+

x∑
k=0

[
x∑
s=k

F̄2(t+ s− k)dF1(k)

]
(3.3)

= ψ+

x∑
k=0

[
x−k∑
s=0

F̄2(t+ s)

]
dF1(k)

6 ψ+ F̄2(t)

x∑
k=0

x−k∑
s=0

F̄2(s)dF1(k)

= ψ+ F̄2(t)

x∑
k=0

s∑
k=0

F̄2(s− k)dF1(k),

where the equality follows from the D-NBU(2) property of F2 is given by

ψ = F̄2(t)

x∑
k=0

F̄1(k).

On the other hand

F(t)

x∑
s=0

F̄1(s) = F̄(t)

x∑
k=0

∞∑
s=0

F̄2(s− k)dF1(k)

= F̄(t)

[
x∑
k=0

F̄1(k) +

x∑
s=0

s∑
k=0

F̄2(s− k)dF1(k)

]
> A1 +A2 =

x∑
s=0

F̄(t+ s).

From (3.1), (3.2), and (3.3) and the fact that F̄(t) > F̄2(t) for all t > 0, this proves that F is D-NBU(2).

Theorem 3.2. Suppose thatF1 and F2 are two independent D-NBUCA life distributions. Then their convolution is
also D-NBUCA.

Proof. The survival functions of convolution of two life distribution F1 and F2 is

F̄(u) =

u∑
t=0

F̄1(u− t)f2(t) for all u ∈ N.

Let x,y ∈ N,

∞∑
y=0

∞∑
i=0

F̄(x+ y+ i) =

∞∑
y=0

∞∑
i=0

∞∑
j=0

F̄1(x+ y+ i− j)f2(j)

=

∞∑
y=0

∞∑
i=0

x−1∑
j=0

F̄1(x+ y+ i− j)f2(j) +

∞∑
y=0

∞∑
i=0

∞∑
j=x

F̄1(x+ y+ i− j)f2(j)

=

∞∑
y=0

x−1∑
j=0

f2(j)

∞∑
i=0

F̄1(x+ y+ i− j) +

∞∑
y=0

∞∑
i=0

∞∑
j=0

F̄1(y+ i− j)f2(x+ j) = I1 + I2.

We observe that

I1 6
∞∑
y=0

F̄1(y)

x−1∑
j=0

f2(j)

∞∑
i=0

F̄1(x+ i− j). (3.4)
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Also,

I2 =

∞∑
y=0

∞∑
i=0

F̄2(x− 1)
∞∑
i=y

F̄1(i) +

∞∑
y=0

∞∑
i=0

∞∑
j=0

F̄2(x+ j)f1(y+ i− j)

=

∞∑
y=0

∞∑
i=y

F̄1(i) +

∞∑
y=0

∞∑
i=0

y+i∑
j=0

F̄2(x+ y+ i− j)f1(j)

= F̄2(x− 1)
∞∑
y=0

∞∑
i=y

F̄1(i) +

∞∑
y=0

∞∑
j=y+1

∞∑
i=j−y

F̄2(x+ y+ i− j)f1(j)

+

∞∑
y=0

∞∑
i=0

∞∑
j=0

F̄2(x+ y+ i− j)f1(j) = A1 +A2 +A3,

(3.5)

A1 =

∞∑
y=0

F̄2(x− 1)µ1F̄1(y) 6 µ1µF̄2(x− 1),

A2 =

∞∑
y=0

∞∑
j=y+1

f1(j)

∞∑
i=0

F̄2(x+ i) =

∞∑
y=0

F̄1(y)

∞∑
i=0

F̄2(x+ i),

A3 6
∞∑
y=0

∞∑
j=0

f1(j)

[
F̄2(y− j)

∞∑
i=0

F̄2(x+ i)

]

=

∞∑
y=0

 y∑
j=0

F̄2(y− j)f1(j)

 ∞∑
i=0

F̄2(x+ i)

=

∞∑
y=0

[
F̄(y) − F̄1(y)

] ∞∑
i=0

F̄2(x+ i) = (µ− µ1)

∞∑
i=0

F̄2(x+ i).

Hence

I2 6 µ1µF̄2(x− 1) + µ
∞∑
i=0

F̄2(x+ i). (3.6)

Combining (3.4), (3.5), and (3.6), then

∞∑
y=0

∞∑
i=0

F̄(x+ y+ i) 6 µ


∞∑
j=0

x−1∑
i=0

F̄1(x+ i− j)f2(j)

{µ1F̄2(x− 1) + F̄2(x+ i)
}

.

Finally, implementing (3.5) with y=0, we get

∞∑
y=0

F̄(y)

∞∑
i=0

F̄(x+ i) =

∞∑
y=0

F̄(y)


∞∑
j=0

x−1∑
i=0

F̄1(x+ i− j)f2(j) +

∞∑
j=0

∞∑
i=j

F̄2(x+ i− j)f1(j)


=

∞∑
y=0

F̄(y)


∞∑
j=0

x−1∑
i=0

F̄1(x+ i− j)f2(j) + µ1F̄2(x− 1) +
∞∑
j=0

f1(j)

∞∑
i=0

F̄2(x+ i)


>
∞∑
y=0

∞∑
i=0

F̄(x+ y+ i),

which means that F is D-NBUCA.
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Theorem 3.3. Suppose that F1 and F2 are two independent D-GHNBUE life distributions. Then their convolution
is also D-GHNBUE.

Proof. With F∗G denoting the convolution of the life distributions F and G, the result follows from the
following fact. If σF 6 µF, σG 6 µG and σF∗G 6 µF∗G, then either µF or µG.

3.2. Closure of the D-NBU(2) under formation of parallel systems
In this subsection we show that the discrete new better than used in second order is closed under

formation of parallel systems.

Theorem 3.4. Let X1,X2, . . . ,Xnbe independent and identically distributed integer valued random variables with
distribution function F and F is D-NBU(2). Then the random variable Y = max

16i6n
Xi which has the distribution Fn

is also D-NBU(2).

Proof. Since F is D-NBU(2), then
k∑
j=0

F̄(i+ j) 6 F̄(i)
k∑
j=0

F̄(j),

which implies
i+k∑
j=i

F̄(i+ j) 6 F̄(i)
i+k∑
j=0

F̄(j),

or
i+k∑
j=i

[1 − F(j)] 6 F̄(i)

 i∑
j=0

F̄(j) +

i+k∑
j=i+1

F̄(j)

 ,

or equivalently
i+k∑
j=i

[
1 − F(j)

1 − F(i)
− 1 − F(j)

]
6

k∑
j=0

[1 − F(j)] .

Since F is a distribution, we have the following

k∑
j=0

[1 − F(j)] 6
k∑
j=0

Fn(j). (3.7)

Hence
i+k∑
j=i

[
(1 − F(j))F(i)

1 − F(j)

]
>
i+k∑
j=i

[
(1 − Fn(j))Fn(i)

1 − Fn(j)

]
. (3.8)

But
i+k∑
j=i

[
(1 − F(j))F(i)

1 − F(j)
−

(1 − Fn(j))Fn(i)

1 − Fn(j)

]
> 0,

which implies that

i+k∑
j=i

(1 − F(j))F(i)

1 − F(i)

{
1 − Fn−1(j)

[
1 − Fn(j)

1 − Fn(j)
× 1 − F(i)

1 − Fn(i)

]}

=

i+k∑
j=i

(1 − F(j))F(i)

1 − F(i)

{
1 − Fn−1(j)

[
1 + F(j) + · · ·+ Fn−1(j)

1 + F(i) + · · ·+ Fn−1(i)

]}
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>
i+k∑
j=i

(1 − F(j))F(i)

1 − F(i)

{
1 − Fn−1(j)

[
1 + F−1(j) + · · ·+ F−(n−1)(j)

1 + F(i) + · · ·+ Fn−1(i)

]}
> 0.

Since
F(j) 6 F−1(j) 6 F−1(i) for all j 6 i,

from (3.7) and (3.8) we get
i+k∑
j=i

Fn(i)F̄n(j)

F̄n(i)
6

k∑
j=0

F̄n(j).

The above inequality may be written as follows

k∑
j=i

F̄n(j)

F̄n(i)
6

i∑
j=0

F̄n(j) +

k∑
j=i

F̄n(j),

whence
k∑
j=0

F̄n(i+ j)

F̄n(i)
6

k∑
j=0

F̄n(j),

or
k∑
j=0

F̄n(i+ j) 6 F̄n(i)
k∑
j=0

F̄n(j),

thus, Fn is also D-NBU(2).

3.3. Mixtures

In this subsection preservation of the D-NWU(2), D-NWUCA, and D-GHNWUE under mixing are
discussed.

Theorem 3.5. The D-NWU(2) Class is preserved under mixing.

Proof. Let g be the mixing p.m.f. Applying Chebyshev’s inequality, we obtain

F̄(i)

k∑
j=0

F̄(j) =

∞∑
l=0

F̄l(i)g(l)

 k∑
j=0

∞∑
l=0

F̄l(j)g(l)


6
∞∑
l=0

F̄l(i) k∑
j=0

F̄l(j)

g(l)
6
∞∑
l=0

k∑
j=0

F̄l(j)F̄l(i)g(l) 6
∞∑
l=0

k∑
j=0

F̄l(i+ j)g(l) =

k∑
j=0

∞∑
l=0

F̄l(i+ j)g(l) =

k∑
j=0

F̄(i+ j),

as required.

Theorem 3.6. The D-NWUCA class is preserved under mixing.

Proof. Let g be the mixing p.m.f. Applying Chebyshev’s inequality, we obtain

F̄(j)

∞∑
k=0

∞∑
i=0

F̄(i) =

[ ∞∑
l=0

F̄l(j)g(l)

][ ∞∑
k=0

∞∑
i=0

∞∑
l=0

F̄l(j)g(l)

]
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=

[ ∞∑
l=0

F̄l(j)g(l)

]{ ∞∑
l=0

[ ∞∑
k=0

∞∑
i=0

F̄l(j)

]
g(l)

}

6
∞∑
m=0

[
F̄m(j)

∞∑
k=0

∞∑
i=0

F̄m(i)

]
g(m)

6
∞∑
m=0

∞∑
k=0

∞∑
i=k

F̄m(i)g(m) =

∞∑
k=0

∞∑
i=k

∞∑
m=0

F̄m(i)g(m) =

∞∑
k=0

∞∑
i=k

F̄(i),

as required.

Theorem 3.7. The D-GHNWUE class is preserved under mixing.

Proof. LetFi(j), i ∈ N, be D-GHNWUE and F(j) =
∑∞
i=0 Fi(j)g(i) where g(i), i ∈ Nis a probability function

then µj =
∑∞
i=0 F̄j(i) > 1, i ∈ N and

∑∞
j=0 F̄(j) > 1. Utilizing Taylors expansion for two-dimensional

functions, it can be show that ϕ(s, t) = S1−j(t− 1)j, s > 0, t > 1, j ∈ N, is a convex real function. Then the
two-dimensional Jensens inequality leads to

ϕ(E(s),E(t)) 6 Eϕ(s, t),

where S and T are identically distributed random variables with joint distribution defined by

Fr(S = µi, T = µl) =

{
g(i), i = l,
0, otherwise,

and with marginal distributions defined by Fr(S = µi) = g(i), i ∈ N. Therefore

[E(S)]1−j [E(T) − 1]j = [E(S)]1−j [E(T − 1)]j 6 E
[
S1−j(T − 1)

]
,

which is equivalent to [ ∞∑
i=0

µig(i)

]1−j [ ∞∑
l=0

(µl − 1)g(l)

]j
6
∞∑
i=0

µ
1−j
i (µl − 1)jg(i),

or [ ∞∑
i=0

µig(i)

]1−j [
1 −

1∑∞
l=0 µlg(l)

]
6
∞∑
i=0

µ
1−j
i (1 −

1
µi

)jg(i).

The desired result is now established since

∞∑
k=0

∞∑
j=k

F̄(j) =

∞∑
i=0

 ∞∑
k=0

∞∑
j=k

F̄i(j)

g(i) > ∞∑
k=0

∞∑
j=k

µi

(
1 −

1
µi

)k
g(i) >

∞∑
i=0

µ2
ig(i) = µ

2.
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